Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Biochem Funct ; 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35229356

RESUMEN

Botryosphaeran, a (1→3)(1→6)-ß-d-glucan, presents several beneficial activities, such as antiproliferative, hypoglycemic and antitumoural activities. This study evaluated the effects of botryosphaeran on oxidative stress, inflammation and metabolic activities in Walker-256 tumour-bearing non-obese and obese rats. Wistars rats were divided into four groups: control tumour (CT); control tumour + botryosphaeran (CTB); obese tumour (OT), and obese tumour + botryosphaeran (OTB). In ninth week, obese and non-obese rats were inoculated with 1 × 107 Walker-256 tumour cells and treated with botryosphaeran (30 mg/kg/d for 15 days). In 11th week, the following parameters were evaluated glycogen, glucose and lactate levels, pro-oxidant (TBARS) and antioxidant markers (superoxide dismutase [SOD]; catalase [CAT]; glutathione-S-transferase [GST]; reduced glutathione [GSH]; vitamin C) and cytokines. Obesity presented oxidative stress and inflammation, as demonstrated by high levels of TBARS, SOD and TNF-α, and lower levels of CAT, GSH and interleukin-10 (IL-10). Botryosphaeran significantly decreased TBARS and TNF-α and increased GST, GSH, vitamin C and IL-10 in the liver; increased SOD and vitamin C in tumour tissue; decreased TBARS in adipose tissue, and notably decreased the levels of glycogen and lactate in the tumour of CTB rats. Botryosphaeran promoted significant antioxidant, anti-inflammatory, and beneficial metabolic effects in Walker-256 tumour-bearing non-obese and obese rats, which contributed to its antitumour activity.

2.
Biomedicines ; 9(3)2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33801128

RESUMEN

Phospholipases-D (PLDs) found in Loxosceles spiders' venoms are responsible for the dermonecrosis triggered by envenomation. PLDs can also induce other local and systemic effects, such as massive inflammatory response, edema, and hemolysis. Recombinant PLDs reproduce all of the deleterious effects induced by Loxosceles whole venoms. Herein, wild type and mutant PLDs of two species involved in accidents-L. gaucho and L. laeta-were recombinantly expressed and characterized. The mutations are related to amino acid residues relevant for catalysis (H12-H47), magnesium ion coordination (E32-D34) and binding to phospholipid substrates (Y228 and Y228-Y229-W230). Circular dichroism and structural data demonstrated that the mutant isoforms did not undergo significant structural changes. Immunoassays showed that mutant PLDs exhibit conserved epitopes and kept their antigenic properties despite the mutations. Both in vitro (sphingomyelinase activity and hemolysis) and in vivo (capillary permeability, dermonecrotic activity, and histopathological analysis) assays showed that the PLDs with mutations H12-H47, E32-D34, and Y228-Y229-W230 displayed only residual activities. Results indicate that these mutant toxins are suitable for use as antigens to obtain neutralizing antisera with enhanced properties since they will be based on the most deleterious toxins in the venom and without causing severe harmful effects to the animals in which these sera are produced.

3.
Toxins (Basel) ; 12(3)2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155765

RESUMEN

Spiders of the genus Loxosceles, popularly known as Brown spiders, are considered a serious public health issue, especially in regions of hot or temperate climates, such as parts of North and South America. Although the venoms of these arachnids are complex in molecular composition, often containing proteins with distinct biochemical characteristics, the literature has primarily described a family of toxins, the Phospholipases-D (PLDs), which are highly conserved in all Loxosceles species. PLDs trigger most of the major clinical symptoms of loxoscelism i.e., dermonecrosis, thrombocytopenia, hemolysis, and acute renal failure. The key role played by PLDs in the symptomatology of loxoscelism was first described 40 years ago, when researches purified a hemolytic toxin that cleaved sphingomyelin and generated choline, and was referred to as a Sphingomyelinase-D, which was subsequently changed to Phospholipase-D when it was demonstrated that the enzyme also cleaved other cellular phospholipids. In this review, we present the information gleaned over the last 40 years about PLDs from Loxosceles venoms especially with regard to the production and characterization of recombinant isoforms. The history of obtaining these toxins is discussed, as well as their molecular organization and mechanisms of interaction with their substrates. We will address cellular biology aspects of these toxins and how they can be used in the development of drugs to address inflammatory processes and loxoscelism. Present and future aspects of loxoscelism diagnosis will be discussed, as well as their biotechnological applications and actions expected for the future in this field.


Asunto(s)
Fosfolipasa D/historia , Hidrolasas Diéster Fosfóricas/historia , Venenos de Araña/historia , Animales , Catálisis , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Fosfolipasa D/química , Fosfolipasa D/farmacología , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/farmacología , Proteómica , Proteínas Recombinantes/farmacología , Picaduras de Arañas/diagnóstico , Picaduras de Arañas/tratamiento farmacológico , Picaduras de Arañas/enzimología , Venenos de Araña/química , Venenos de Araña/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA