Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 19: 2655-2673, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500680

RESUMEN

Introduction: Immunotherapy has revolutionized cancer treatment by harnessing the immune system to enhance antitumor responses while minimizing off-target effects. Among the promising cancer-specific therapies, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted significant attention. Methods: Here, we developed an ionizable lipid nanoparticle (LNP) platform to deliver TRAIL mRNA (LNP-TRAIL) directly to the tumor microenvironment (TME) to induce tumor cell death. Our LNP-TRAIL was formulated via microfluidic mixing and the induction of tumor cell death was assessed in vitro. Next, we investigated the ability of LNP-TRAIL to inhibit colon cancer progression in vivo in combination with a TME normalization approach using Losartan (Los) or angiotensin 1-7 (Ang(1-7)) to reduce vascular compression and deposition of extracellular matrix in mice. Results: Our results demonstrated that LNP-TRAIL induced tumor cell death in vitro and effectively inhibited colon cancer progression in vivo, particularly when combined with TME normalization induced by treatment Los or Ang(1-7). In addition, potent tumor cell death as well as enhanced apoptosis and necrosis was found in the tumor tissue of a group treated with LNP-TRAIL combined with TME normalization. Discussion: Together, our data demonstrate the potential of the LNP to deliver TRAIL mRNA to the TME and to induce tumor cell death, especially when combined with TME normalization. Therefore, these findings provide important insights for the development of novel therapeutic strategies for the immunotherapy of solid tumors.


Asunto(s)
Neoplasias del Colon , Liposomas , Nanopartículas , Microambiente Tumoral , Animales , Ratones , Ligandos , Apoptosis , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Factor de Necrosis Tumoral alfa , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
2.
Nat Commun ; 15(1): 590, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238326

RESUMEN

A safe and effective vaccine with long-term protection against SARS-CoV-2 variants of concern (VOCs) is a global health priority. Here, we develop lipid nanoparticles (LNPs) to provide safe and effective delivery of plasmid DNA (pDNA) and show protection against VOCs in female small animal models. Using a library of LNPs encapsulating unique barcoded DNA (b-DNA), we screen for b-DNA delivery after intramuscular administration. The top-performing LNPs are further tested for their capacity of pDNA uptake in antigen-presenting cells in vitro. The lead LNP is used to encapsulate pDNA encoding the HexaPro version of SARS-CoV-2 spike (LNP-HPS) and immunogenicity and protection is tested in vivo. LNP-HPS elicit a robust protective effect against SARS-CoV-2 Gamma (P.1), correlating with reduced lethality, decreased viral load in the lungs and reduced lung damage. LNP-HPS induce potent humoral and T cell responses against P.1, and generate high levels of neutralizing antibodies against P.1 and Omicron (B.1.1.529). Our findings indicate that the protective efficacy and immunogenicity elicited by LNP-HPS are comparable to those achieved by the approved COVID-19 vaccine from Biontech/Pfizer in animal models. Together, these findings suggest that LNP-HPS hold great promise as a vaccine candidate against VOCs.


Asunto(s)
COVID-19 , ADN Forma B , Vacunas de ADN , Femenino , Animales , Humanos , SARS-CoV-2/genética , Vacunas de ADN/genética , Nanovacunas , Vacunas contra la COVID-19 , COVID-19/prevención & control , ADN , Anticuerpos Neutralizantes , Anticuerpos Antivirales
3.
Biomed Pharmacother ; 170: 115981, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38091634

RESUMEN

CXCL12 is a key chemokine implicated in neuroinflammation, particularly during Zika virus (ZIKV) infection. Specifically, CXCL12 is upregulated in circulating cells of ZIKV infected patients. Here, we developed a lipid nanoparticle (LNP) to deliver siRNA in vivo to assess the impact of CXCL12 silencing in the context of ZIKV infection. The biodistribution of the LNP was assessed in vivo after intravenous injection using fluorescently tagged siRNA. Next, we investigated the ability of the developed LNP to silence CXCL12 in vivo and assessed the resulting effects in a murine model of ZIKV infection. The LNP encapsulating siRNA significantly inhibited CXCL12 levels in the spleen and induced microglial activation in the brain during ZIKV infection. This activation was evidenced by the enhanced expression of iNOS, TNF-α, and CD206 within microglial cells. Moreover, T cell subsets exhibited reduced secretion of IFN-É£ and IL-17 following LNP treatment. Despite no observable alteration in viral load, CXCL12 silencing led to a significant reduction in type-I interferon production compared to both ZIKV-infected and uninfected groups. Furthermore, we found grip strength deficits in the group treated with siRNA-LNP compared to the other groups. Our data suggest a correlation between the upregulated pro-inflammatory cytokines and the observed decrease in strength. Collectively, our results provide evidence that CXCL12 silencing exerts a regulatory influence on the immune response in the brain during ZIKV infection. In addition, the modulation of T-cell activation following CXCL12 silencing provides valuable insights into potential protective mechanisms against ZIKV, offering novel perspectives for combating this infection.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Ratones , Animales , ARN Interferente Pequeño , Distribución Tisular , Encéfalo , Inmunidad , Quimiocina CXCL12/genética
4.
Drug Deliv Transl Res ; 13(5): 1420-1435, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36749480

RESUMEN

The use of implantable biomaterials to replace physiological and anatomical functions has been widely investigated in the clinic. However, the selection of biomaterials is crucial for long-term function, and the implantation of certain biomaterials can cause inflammatory and fibrotic processes, triggering a foreign body reaction that leads to loss of function and consequent need for removal. Specifically, the Wnt signaling pathway controls the healing process of the human body, and its dysregulation can result in inflammation and fibrosis, such as in peritoneal fibrosis. Here, we assessed the effects of daily oral administration of a Wnt pathway inhibitor complex (CD:LGK974) to reduce the inflammatory, fibrotic, and angiogenic processes caused by intraperitoneal implants. CD:LGK974 significantly reduced the infiltration of immune cells and release of inflammatory cytokines in the implant region compared to the control groups. Furthermore, CD:LGK974 inhibited collagen deposition and reduced the expression of pro-fibrotic α-SMA and TGF-ß1, confirming fibrosis reduction. Finally, the CD:LGK974 complex decreased VEGF levels and both the number and area of blood vessels formed, suggesting decreased angiogenesis. This work introduces a potential new application of the Wnt inhibitor complex to reduce peritoneal fibrosis and the rejection of implants at the intraperitoneal site, possibly allowing for longer-term functionality of existing clinical biomaterials.


Asunto(s)
Fibrosis Peritoneal , Humanos , Fibrosis Peritoneal/complicaciones , Factor A de Crecimiento Endotelial Vascular/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/etiología , Reacción a Cuerpo Extraño/etiología , Reacción a Cuerpo Extraño/metabolismo , Cicatrización de Heridas
5.
Front Immunol ; 10: 3120, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038637

RESUMEN

Joint pain is a distressing symptom of arthritis, and it is frequently persistent even after treatments which reduce local inflammation. Continuous production of algogenic factors activate/sensitize nociceptors in the joint structures and contribute to persistent pain, a challenging and difficult condition to treat. TNF is a crucial cytokine for the pathogenesis of several rheumatic diseases, and its inhibition is a mainstay of treatment to control joint symptoms, including pain. Here, we sought to investigate the inflammatory changes and the role of TNF in dorsal root ganglia (DRG) during persistent hypernociception after the resolution of acute joint inflammation. Using a model of antigen-induced arthritis, the peak of joint inflammation occurred 12-24 h after local antigen injection and was characterized by an intense influx of neutrophils, pro-inflammatory cytokine production, and joint damage. We found that inflammatory parameters in the joint returned to basal levels between 6 and 8 days after antigen-challenge, characterizing the resolving phase of joint inflammation. Mechanical hyperalgesia was persistent up to 14 days after joint insult. The persistent nociception was associated with the inflammatory status of DRG after cessation of acute joint inflammation. The late state of neuroinflammation in the ipsilateral side was evidenced by gene expression of TNF, TNFR2, IL-6, IL-1ß, CXCL2, COX2, and iNOS in lumbar DRG (L3-L5) and leukocyte adhesion in the lumbar intumescent vessels between days 6 and 8. Moreover, there were signs of resident macrophage activation in DRG, as evidenced by an increase in Iba1-positive cells. Intrathecal or systemic injection of etanercept, an agent clinically utilized for TNF neutralization, at day 7 post arthritis induction, alleviated the persistent joint hyperalgesia by specific action in DRG. Our data suggest that neuroinflammation in DRG after the resolution of acute joint inflammation drives continuous neural sensitization resulting in persistent joint nociception in a TNF-dependent mechanism.


Asunto(s)
Ganglios Espinales/metabolismo , Expresión Génica , Nocicepción , Factor de Necrosis Tumoral alfa/genética , Animales , Artralgia/etiología , Artralgia/metabolismo , Artralgia/patología , Biomarcadores , Biopsia , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Médula Espinal , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...