Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Article En | MEDLINE | ID: mdl-38113964

In addition to their well-known classical effects, cannabinoid CB1 and CB2 receptors have also been involvement in both deleterious and protective actions on the heart under various pathological conditions. While the potential therapeutic applications of the endocannabinoid system in the context of cardiovascular function are indeed a viable prospect, significant debate exists within the literature regarding whether CB1, CB2, or a combination of both receptors exert a favorable influence on cardiac function. Hence, the aim of this study was to investigate the effects of CB1 + CB2 or CB2 agonists on cardiac excitation-contraction (E-C) coupling, utilizing fish (Brycon amazonicus) as an experimental model. The CB2 agonist elicited marked positive inotropic and lusitropic responses in isolated ventricular myocardium, induced cyclic adenosine 3',5'-monophosphate (cAMP) production, and upregulated critical Ca2+ handling proteins, such as sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and Na+/Ca2+ exchanger (NCX). Our current study demonstrated, for the first time, that CB2 receptor activation-induced effects improved the efficiency of Ca2+ cycling, excitation-contraction coupling (E-C coupling), and cardiac performance in under physiological conditions. Hence, CB2 receptors could be considered a potential therapeutic target for modulating cardiac contractile dysfunctions.


Cannabinoids , Characiformes , Animals , Receptors, Cannabinoid/metabolism , Myocardium/metabolism , Heart , Excitation Contraction Coupling , Cannabinoid Receptor Agonists/metabolism , Cannabinoid Receptor Agonists/pharmacology , Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB1/metabolism
2.
Fish Physiol Biochem ; 47(6): 1969-1982, 2021 Dec.
Article En | MEDLINE | ID: mdl-34668117

This study investigated the dependence of contraction from extracellular Ca2+, the presence of a functional sarcoplasmic reticulum (SR), and the effects of ß-adrenergic stimulation using isometric cardiac muscle preparations. Moreover, the expression of Ca2+-handling proteins such as SR-Ca2+-ATPase (SERCA), phospholamban (PLN), and Na+/Ca2+ exchanger (NCX) were also evaluated in the ventricular tissue of adult African sharptooth catfish, Clarias gariepinus, a facultative air-breathing fish. In summary, we observed that (1) contractility was strongly regulated by extracellular Ca2+; (2) inhibition of SR Ca2+-release by application of ryanodine reduced steady-state force production; (3) ventricular myocardium exhibited clear post-rest decay, even in the presence of ryanodine, indicating a decrease in SR Ca2+ content and NCX as the main pathway for Ca2+ extrusion; (4) a positive force-frequency relationship was observed above 60 bpm (1.0 Hz); (5) ventricular tissue was responsive to ß-adrenergic stimulation, which caused significant increases in twitch force, kept a linear force-frequency relationship from 12 to 96 bpm (0.2 to Hz), and improved the cardiac pumping capacity (CPC); and (6) African catfish myocardium exhibited similar expression patterns of NCX, SERCA, and PLN, corroborating our findings that both mechanisms for Ca2+ transport across the SR and sarcolemma contribute to Ca2+ activator. In conclusion, this fish species displays great physiological plasticity of E-C coupling, able to improve the ability to maintain cardiac performance under physiological conditions to ecological and/or adverse environmental conditions, such as hypoxic air-breathing activity.


Adrenergic Agents/pharmacology , Calcium , Catfishes , Myocardial Contraction , Sarcoplasmic Reticulum , Animals , Calcium/metabolism , Catfishes/metabolism , Ryanodine , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Calcium Exchanger
3.
Article En | MEDLINE | ID: mdl-31676333

Pythons are important models of studies on postprandial metabolism because their physiological responses are exacerbated when digesting large prey. Prior studies of these animals have shown hypertrophy of the cardiac tissue 2 to 3 days after feeding, coinciding with the peak of the specific dynamic action (SDA), but the consequences of this remodeling in myocardial contractility have not been studied, which is the purpose of this work. Specimens of Python molurus were divided into two groups: a Digesting group (2 days after feeding, at the peak of SDA), and a Fasting group (28 days after feeding). When compared to the Fasting group, the Digesting group showed higher relative ventricular mass and calcium-handling protein expression such as sarcoplasmic reticulum Ca2+-ATPase (SERCA), phospholamban (PLB), and the Na+/Ca2+ exchanger (NCX). Digesting pythons also exhibited significant increases in the cardiac contraction force (Fc), rates of force development and relaxation, and cardiac pumping capacity. Therefore, the higher SERCA, PLB and NCX expression levels increased cytosolic Ca2+ transient amplitude, improving myofilament force. These changes are crucial to maintain cardiac output and a relatively high and continuous blood flow required by metabolic expenditure that occurs in postprandial animals.


Boidae/physiology , Calcium-Binding Proteins/biosynthesis , Feeding Behavior/physiology , Myocardial Contraction/physiology , Myocardium/metabolism , Reptilian Proteins/biosynthesis , Animals , Myanmar
4.
Braz J Microbiol ; 44(4): 1049-57, 2013 Dec.
Article En | MEDLINE | ID: mdl-24688492

Clavulanic acid (CA) is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064). The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant.


Clavulanic Acid/metabolism , Metabolic Engineering , Mutagenesis , Mutation , Streptomyces/metabolism , Culture Media/chemistry , Lipase/metabolism , Methyl Methanesulfonate , Streptomyces/drug effects , Streptomyces/genetics , Streptomyces/radiation effects , Ultraviolet Rays
...