Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(19): 28632-28643, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558334

RESUMEN

Lipases represent versatile biocatalysts extensively employed in transesterification reactions for ester production. Ethyl oleate holds significance in biodiesel production, serving as a sustainable alternative to petroleum-derived diesel. In this study, our goal was to prospect lipase and assess its efficacy as a biocatalyst for ethyl oleate synthesis. For quantitative analysis, a base medium supplemented with Rhodamine B, olive oil, and Tween 80 was used. Solid-state fermentation utilized crambe seeds of varying particle sizes and humidity levels as substrates. In the synthesis of ethyl oleate, molar ratios of 1:3, 1:6, and 1:9, along with a total enzymatic activity of 60 U in n-heptane, were utilized at temperatures of 30 °C, 37 °C, and 44 °C. Reactions were conducted in a shaker at 200 rpm for 60 min. As a result, we first identified Penicillium polonicum and employed the method of solid-state fermentation using crambe seeds as a substrate to produce lipase. Our findings revealed heightened lipolytic activity (22.5 Ug-1) after 96 h of fermentation using crambe cake as the substrate. Optimal results were achieved with crambe seeds at a granulometry of 0.6 mm and a fermentation medium humidity of 60%. Additionally, electron microscopy suggested the immobilization of lipase in the substrate, enabling enzyme reuse for up to 4 cycles with 100% enzymatic activity. Subsequently, we conducted applicability tests of biocatalysts for ethyl oleate synthesis, optimizing parameters such as the acid/alcohol molar ratio, temperature, and reaction time. We attained 100% conversion within 30 min at 37 °C, and our results indicated that the molar ratio proportion did not significantly influence the outcome. These findings provide a methodological alternative for the utilization of biocatalysts in ethyl oleate synthesis.


Asunto(s)
Fermentación , Lipasa , Ácidos Oléicos , Penicillium , Ácidos Oléicos/biosíntesis , Ácidos Oléicos/metabolismo , Penicillium/metabolismo , Lipasa/metabolismo , Esterificación , Biocatálisis , Lipólisis
2.
Environ Sci Pollut Res Int ; 30(13): 35517-35527, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36529799

RESUMEN

Oils and grease (O&G) have low affinity for water and represent a class of pollutants present in the dairy industry. Enzyme-mediated bioremediation using biocatalysts, such as lipases, has shown promising potential in biotechnology, as they are versatile catalysts with high enantioselectivity and regioselectivity and easy availability, being considered a clean technology (white biotechnology). Specially in the treatment of effluents from dairy industries, these enzymes are of particular importance as they specifically hydrolyze O&G. In this context, the objective of this work is to prospect filamentous fungi with the ability to synthesize lipases for application in a high-fat dairy wastewater environment. We identified and characterized the fungal species Aspergillus sclerotiorum as a good lipase producer. Specifically, we observed highest lipolytic activity (20.72 U g-1) after 96 h of fermentation using sunflower seed as substrate. The fungal solid fermented was used in the bioremediation in dairy effluent to reduce O&G. The experiment was done in kinetic from 24 to 168 h and reduced over 90% of the O&G present in the sample after 168 h. Collectively, our work demonstrated the efficiency and applicability of fungal fermented solids in bioremediation and how this process can contribute to a more sustainable wastewater pretreatment, reducing the generation of effluents produced by dairy industries.


Asunto(s)
Aspergillus , Aguas Residuales , Biodegradación Ambiental , Lipasa , Aceites
3.
J Cosmet Dermatol ; 19(1): 33-37, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31389656

RESUMEN

BACKGROUND: Currently, there is a great interest in cosmetics prepared on natural resources bases and this may restrict the use of synthetic substances. Plants play a relevant role as a source of biologically active natural products with cosmetic and dermatological importance. According to this context, polyphenolic extracts are highlighted because they have proven antioxidant, anti-inflammatory, anti-aging, antimicrobial, and supporting activity in solar photoprotection. AIMS: The purpose this study were reviewed at reporting the antioxidant activity of phenolic compounds, mainly applied to dermatological therapy, and highlighting the action mechanisms and structure-activity relationship. METHODOLOGY: In September 2017, we performed a literature search in PubMed and Scielo for scientific researches, antioxidant studies, and systemic reviews. The search terms we used were "PHYTOCOSMETICS" AND "ANTIOXIDANT ACTIVITY" OR "PHENOLIC COMPOUNDS" (from 2000). As inclusion criteria were used relevant original articles, scientific research in the area of interest, and crucial reference articles. Exclusion criteria were: duplicate publications, non-relevant articles and not published in English. RESULTS: The potential cosmetic application of phenolic compounds as natural antioxidants has been attributed to the chemical structure of these compounds, which to interfere in different phases of the oxidation mechanism. CONCLUSION: The use of phenolic extracts emerges as a viable alternative for cosmetic application, ensuring a commitment to sustainability. However, it is of crucial importance to evaluate the toxicity risks of raw materials and finished products.


Asunto(s)
Antioxidantes/farmacología , Productos Biológicos/farmacología , Cosméticos/farmacología , Polifenoles/farmacología , Antioxidantes/química , Productos Biológicos/química , Cosméticos/química , Radicales Libres/metabolismo , Humanos , Estructura Molecular , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Polifenoles/química , Piel/efectos de los fármacos , Piel/metabolismo , Envejecimiento de la Piel/efectos de los fármacos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA