Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmacol Biochem Behav ; 240: 173778, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38679081

RESUMEN

Depression and anxiety disorders have their pathophysiologies linked to inflammation and oxidative stress. In this context, celecoxib (CLX) and etoricoxib (ETR) inhibit cyclooxygenase 2 (COX-2), an enzyme expressed by cells involved in the inflammatory process and found in the brain. Studies have been using CLX as a possible drug in the treatment of depression, although its mechanisms at the central nervous system level are not fully elucidated. In this study, the effects of CLX and ETR on behavioral, oxidative, and inflammatory changes induced by systemic exposure to Escherichia coli lipopolysaccharide (LPS) were evaluated in adult male swiss mice. For ten days, the animals received intraperitoneal injections of LPS at 0.5 mg/kg. From the sixth to the tenth day, one hour after LPS exposure, they were treated orally with CLX (15 mg/kg), ETR (10 mg/kg), or fluoxetine (FLU) (20 mg/kg). Twenty-four hours after the last oral administration, the animals underwent evaluation of locomotor activity (open field test), predictive tests for depressive-like behavior (forced swim and tail suspension tests), and anxiolytic-like effect (elevated plus maze and hole board tests). Subsequently, the hippocampus, prefrontal cortex and striatum were dissected for the measurement of oxidative and nitrosative parameters (malondialdehyde, nitrite, and glutathione) and quantification of pro-inflammatory cytokines (IL-1ß and IL-6). LPS induced depressive and anxious-like behavior, and treatment with CLX or ETR was able to reverse most of the behavioral changes. It was evidenced that nitrosative stress and the degree of lipid peroxidation induced by LPS were reduced in different brain areas after treatment with the drugs, as well as the endogenous defense system against free radicals was strengthened. CLX and ETR also significantly reduced LPS-induced cytokine levels. These data are expected to expand information on the role of inflammation in depression and anxiety and provide insights into possible mechanisms of COX-2 inhibitors in psychiatric disorders with a neurobiological basis in inflammation and oxidative stress.


Asunto(s)
Ansiedad , Conducta Animal , Celecoxib , Inhibidores de la Ciclooxigenasa 2 , Depresión , Lipopolisacáridos , Estrés Oxidativo , Animales , Masculino , Ratones , Lipopolisacáridos/farmacología , Estrés Oxidativo/efectos de los fármacos , Inhibidores de la Ciclooxigenasa 2/farmacología , Depresión/tratamiento farmacológico , Depresión/inducido químicamente , Depresión/metabolismo , Ansiedad/tratamiento farmacológico , Ansiedad/inducido químicamente , Conducta Animal/efectos de los fármacos , Celecoxib/farmacología , Celecoxib/administración & dosificación , Etoricoxib/farmacología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Inflamación/metabolismo
2.
Arch Toxicol ; 98(6): 1877-1890, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38494580

RESUMEN

Cannabis is the most used illicit substance for recreational purposes around the world. However, it has become increasingly common to witness the use of approved cannabis preparations for symptoms management in various diseases. The aim of this study was to investigate the effects of cannabis nano emulsion in the liver of Wistar rats, with different proportions of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). For this, a total of 40 male Wistar rats were distributed into 5 groups, as follows (n = 8 per group): Control: G1, Experimental group (G2): treated with cannabis nano emulsion (THC and CBD) at a dose of 2.5 mg/kg, Experimental group (G3): treated with cannabis nano emulsion (THC and CBD) at a dose of 5 mg/kg, Experimental group (G4): treated with cannabis nano emulsion (CBD) at a dose of 2.5 mg/kg; Experimental group (G5): treated with cannabis nano emulsion (CBD) at a dose of 5 mg/kg. Exposure to the nano emulsion was carried out for 21 days, once a day, orally (gavage). Our results showed that cannabis nano emulsions at higher doses (5 mg/kg), regardless of the composition, induced histopathologic changes in the liver (G3 and G5) in comparison with the control group. In line with that, placental glutathione S-transferase (GST-P) positive foci increased in both G3 and G5 (p < 0.05), as well as the immune expression of Ki-67, vascular endothelial growth factor (VEGF) and p53 (p < 0.05). Also, the nano emulsion intake induced an increase in the number of micronucleated hepatocytes in G5 (p < 0.05) whereas G3 showed an increase in binucleated cells (p < 0.05). As for metanuclear alterations, karyolysis and pyknosis had an increased frequency in G3 (p < 0.05). Taken together, the results show that intake of cannabis nano emulsion may induce degenerative changes and genotoxicity in the liver in higher doses, demonstrating a clear dose-response relationship.


Asunto(s)
Cannabidiol , Cannabis , Relación Dosis-Respuesta a Droga , Emulsiones , Hígado , Ratas Wistar , Animales , Masculino , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Cannabidiol/toxicidad , Cannabidiol/administración & dosificación , Cannabis/química , Dronabinol/toxicidad , Dronabinol/administración & dosificación , Ratas , Nanopartículas/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología
3.
Naunyn Schmiedebergs Arch Pharmacol ; 397(8): 6017-6035, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38386042

RESUMEN

Mania is associated with disturbed dopaminergic transmission in frontotemporal regions. D-amphetamine (AMPH) causes increased extracellular DA levels, considered an acknowledged mania model in rodents. Doxycycline (DOXY) is a second-generation tetracycline with promising neuroprotective properties. Here, we tested the hypothesis that DOXY alone or combined with Lithium (Li) could reverse AMPH-induced mania-like behavioral alterations in mice by the modulation of monoamine levels in brain areas related to mood regulation, as well as cytoprotective and antioxidant effects in hippocampal neurons. Male Swiss mice received AMPH or saline intraperitoneal (IP) injections for 14 days. Between days 8-14, mice receive further IP doses of DOXY, Li, or their combination. For in vitro studies, we exposed hippocampal neurons to DOXY in the presence or absence of AMPH. DOXY alone or combined with Li reversed AMPH-induced risk-taking behavior and hyperlocomotion. DOXY also reversed AMPH-induced hippocampal and striatal hyperdopaminergia. In AMPH-exposed hippocampal neurons, DOXY alone and combined with Li presented cytoprotective and antioxidant effects, while DOXY+Li also increased the expression of phospho-Ser133-CREB. Our results add novel evidence for DOXY's ability to reverse mania-like features while revealing that antidopaminergic activity in some brain areas, such as the hippocampus and striatum, as well as hippocampal cytoprotective effects may account for this drug's antimanic action. This study provides additional rationale for designing clinical trials investigating its potential as a mood stabilizer agent.


Asunto(s)
Antioxidantes , Doxiciclina , Hipocampo , Manía , Neuronas , Animales , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones , Antioxidantes/farmacología , Manía/inducido químicamente , Manía/tratamiento farmacológico , Doxiciclina/farmacología , Conducta Animal/efectos de los fármacos , Células Cultivadas , Anfetamina/farmacología , Anfetamina/toxicidad , Modelos Animales de Enfermedad , Estimulantes del Sistema Nervioso Central/toxicidad , Monoaminas Biogénicas/metabolismo , Dextroanfetamina/farmacología , Dextroanfetamina/toxicidad , Antimaníacos/farmacología , Fármacos Neuroprotectores/farmacología
4.
Neurochem Res ; 48(1): 142-160, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36028736

RESUMEN

In the present study, we investigated the effects of physical exercise in the presence of Vitamin D3 (VD3), on 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian rats. The animals were divided into sham-operated (SO), 6-OHDA-lesioned, and 6-OHDA-lesioned plus VD3 (1 µg/kg, 21 days), in the absence (no exercise, NE) and presence (with exercise, WE) of physical exercise on a treadmill (30 min, speed of 20 cm/s, once a day/21 days). This procedure started, 24 h after the stereotaxic surgery (injections of 6-OHDA into the right striatum). The animals were then subjected to behavioral (rotarod, open field, and apomorphine tests) and their brain areas were dissected for neurochemical, dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) determinations, and immunohistochemical studies for tyrosine hydroxylase (TH), dopamine transporter (DAT), and vitamin D receptor (VD3R). The effects on the brain oxidative stress: nitrite/nitrate, glutathione (GSH), and malondialdehyde (MDA) measurements were also evaluated. Behavioral changes of the 6-OHDA lesioned group were improved by exercise plus VD3. Similar results were observed in dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) concentrations increased by exercise and VD3, compared with SO groups. Additionally, tyrosine hydroxylase (TH) and dopamine transporter (DAT) immunoexpressions were decreased in the 6-OHDA-lesioned groups, with values normalized after exercise and VD3. The VD3 receptor immunoexpression decreased in the 6-OHDA (NE) group, and this was attenuated by exercise, especially after VD3. While 6-OHDA lesions increased, VD3 supplementation decreased the oxidative stress, which was intensified by exercise. VD3 showed neuroprotective properties that were intensified by physical exercise. These VD3 actions on hemiparkinsonian rats are possibly related to its antioxidant and anti-inflammatory effects.


Asunto(s)
Dopamina , Vitamina D , Ratas , Animales , Dopamina/farmacología , Oxidopamina/toxicidad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Ácido 3,4-Dihidroxifenilacético , Colecalciferol/farmacología , Enfermedades Neuroinflamatorias , Ratas Wistar , Tirosina 3-Monooxigenasa/metabolismo , Encéfalo/metabolismo , Estrés Oxidativo , Ejercicio Físico , Cuerpo Estriado/metabolismo
5.
Med Cannabis Cannabinoids ; 5(1): 207-219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467781

RESUMEN

This work is a literature review, presenting the current state of the use of cannabinoids on neurodegenerative diseases. The emphasis is on Parkinson's (PD) and Alzheimer's (AD) diseases, the two most prevalent neurological diseases. The review goes from Cannabis sativa and its hundreds of bioactive compounds to Δ9-tetrahydrocannabinol (THC) and mainly cannabidiol (CBD) and their interactions with the endocannabinoid receptors (CB1 and CB2). CBD molecular targets were also focused on to explain its neuroprotective action mechanism on neurodegenerative diseases. Although THC is the main psychoactive component of C. sativa, and it may induce transient psychosis-like symptoms, growing evidence suggests that CBD may have protective effects against the psychotomimetic effects of THC and therapeutic properties. Furthermore, a great number of recent works on the neuroprotective and anti-inflammatory CBD effects and its molecular targets are also reviewed. We analyzed CBD actions in preclinical and in clinical trials, conducted with PD and AD patients. Although the data on preclinical assays are more convincing, the same is not true with the clinical data. Despite the consensus among researchers on the potential of CBD as a neuroprotective agent, larger and well-designed randomized clinical trials will be necessary to gather conclusive results concerning the use of CBD as a therapeutic strategy for the treatment of diseases such as PD and AD.

6.
Toxicon ; 202: 46-52, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34516995

RESUMEN

Acute kidney injury pathogenesis in envenoming by snakes is multifactorial and involves immunologic reactions, hemodynamic disturbances, and direct nephrotoxicity. Sildenafil (SFC), a phosphodiesterase 5 inhibitor, has been reported to protect against pathological kidney changes. OBJECTIVE: This study aimed to investigate the protective effect of sildenafil against Bothrops alternatus snake venom (BaV)-induced nephrotoxicity. METHODS: Kidneys from Wistar rats (n = 6, weighing 260-300 g) were isolated and divided into four groups: (1) perfused with a modified Krebs-Henseleit solution (MKHS) containing 6 g% of bovine serum albumin; (2) administered 3 µg/mL SFC; (3) perfused with 3 µg/mL BaV; and (4) administered SFC + BaV, both at 3 µg/mL. Subsequently, the perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF), glomerular filtration rate (GFR), and percentage of electrolyte tubular sodium and chloride transport (%TNa+, %TCl-, respectively) were evaluated. The cyclic guanosine monophosphate (cGMP) levels were analyzed in the perfusate, and the kidneys were removed to perform oxidative stress and histopathological analyses. RESULTS: All renal parameters evaluated were reduced with BaV. In the SFC + BaV group, SFC restored PP to normal values and promoted a significant increase in %TNa+ and %TCl-. cGMP levels were increased in the SFC + BaV group. The oxidative stress biomarkers, malondialdehyde (MDA) and glutathione (GSH), were reduced by BaV. In the SFC + BaV group, a decrease in MDA without an increase in GSH was observed. These findings were confirmed by histological analysis, which showed improvement mainly in tubulis. CONCLUSION: Our data suggest the involvement of phosphodiesterase-5 and cGMP in BaV-induced nephrotoxicity since its effects were attenuated by the administration of SFC.


Asunto(s)
Bothrops , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5 , Riñón , Inhibidores de Fosfodiesterasa 5/uso terapéutico , Ratas , Ratas Wistar , Citrato de Sildenafil/uso terapéutico , Venenos de Serpiente/toxicidad
7.
Toxicon ; 190: 31-38, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33307108

RESUMEN

The envenomation caused by the Bothrops pauloensis snake leads to severe local and systemic effects including acute kidney injury. In this study, we investigated the renal effects by phospholipases A2 (PLA2s), divided into two main subgroups, Asp-49 and Lys-49, isolated from the Bothrops pauloensis snake venom (BpV) in isolated rat kidney system. Both PLA2s (3 µg/mL), added alone to the perfusion system and analyzed for 120 min, had significant effects on isolated rat kidney. Asp-49 reduced Glomerular Filtration Rate (GFR) at 60, 90 and 120 min, and the percentage of total tubular sodium transport (%TNa+) and potassium transport (%TK+) at 120 min. Lys-49 increased Perfusion Pressure (PP) at 120 min and reduced GFR, %TNa+ and the percentage of total tubular chloride transport (%TCl-) at 60, 90 and 120 min. Cytokine release in the kidney tissues were increased with Asp-49 PLA2 (IL-10) and Lys-49 PLA2 (TNF-α, IL-1ß, IL-10). Both increased MPO activity. Asp-49 PLA2 decreased Glutathione (GSH) and increased nitrite levels, while Lys-49 PLA2 increased Malondialdehyde (MDA), GSH and nitrite levels. Histological analysis of the perfused kidneys revealed the presence of glomerular degeneration and atrophy, deposit of proteinaceous material in Bowman's space and intratubular with both PLA2s. These findings indicated that both PLA2s modified the functional parameters in an isolated perfused kidney model with increased oxidative stress and cytokine release. PLA2s are one of the components at high concentration in BpV and our results provide important knowledge about their involvement with the nephrotoxic mechanism.


Asunto(s)
Lesión Renal Aguda/metabolismo , Venenos de Crotálidos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Fosfolipasas A2/metabolismo , Animales , Bothrops , Citocinas , Riñón , Glomérulos Renales , Ratas , Venenos de Serpiente
8.
Int J Mol Sci ; 21(11)2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32545390

RESUMEN

The N-methyl-(2S,4R)-trans-4-hydroxy-l-proline-enriched fraction (NMP) from Sideroxylon obtusifolium was evaluated as a neuroprotective agent in the intracerebroventricular (icv) pilocarpine (Pilo) model. To this aim, male mice were subdivided into sham (SO, vehicle), Pilo (300 µg/1 µL icv, followed by the vehicle per os, po) and NMP-treated groups (Pilo 300 µg/1 µL icv, followed by 100 or 200 mg/kg po). The treatments started one day after the Pilo injection and continued for 15 days. The effects of NMP were assessed by characterizing the preservation of cognitive function in both the Y-maze and object recognition tests. The hippocampal cell viability was evaluated by Nissl staining. Additional markers of damage were studied-the glial fibrillary acidic protein (GFAP) and the ionized calcium-binding adaptor molecule 1 (Iba-1) expression using, respectively, immunofluorescence and western blot analyses. We also performed molecular docking experiments revealing that NMP binds to the γ-aminobutyric acid (GABA) transporter 1 (GAT1). GAT1 expression in the hippocampus was also characterized. Pilo induced cognitive deficits, cell damage, increased GFAP, Iba-1, and GAT1 expression in the hippocampus. These alterations were prevented, especially by the higher NMP dose. These data highlight NMP as a promising candidate for the protection of the hippocampus, as shown by the icv Pilo model.


Asunto(s)
Hipocampo/efectos de los fármacos , Hidroxiprolina/farmacología , Fármacos Neuroprotectores/farmacología , Sapotaceae/química , Estado Epiléptico/patología , Animales , Conducta Animal/efectos de los fármacos , Proteínas de Unión al Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Proteínas Transportadoras de GABA en la Membrana Plasmática/química , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Hidroxiprolina/química , Infusiones Intraventriculares , Masculino , Ratones , Proteínas de Microfilamentos/metabolismo , Simulación del Acoplamiento Molecular , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/química , Pilocarpina/administración & dosificación , Pilocarpina/toxicidad , Plantas Medicinales/química , Estado Epiléptico/inducido químicamente
9.
J Evid Based Integr Med ; 24: 2515690X19865166, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31394920

RESUMEN

Wound healing involves the interaction of blood cells, proteins, proteases, growth factors, and extracellular matrix components. Inflammation is one of the first events occurring during this process. Previously, we showed that the N-Methyl-(2S,4R)-trans-4-Hydroxy-L-Proline (NMP) from Sideroxylon obtusifolium leaves (a Brazilian medicinal species) presents an anti-inflammatory action. Considering inflammation as an important event in the wound healing process, the objectives were to investigate the topical effects of the NMP gel on a mice wound-induced model. Male Swiss mice were divided into 4 groups: Sham (surgical procedure only), Control (gel-base treated), and 3% or 10% NMP gel-treated groups. Measurements of wound areas and microscopic analyses (HE [hematoxylin-eosin] and PSR [picrosirius red] stainings) were carried out, at the 7th and 12th, days after the wound induction. Furthermore, immunohistochemical assays for iNOS (inducible nitric oxide synthase) and COX-2 (cyclooxygenase-2) and biochemical measurements for TBARS (thiobarbituric acid reactive substances), GSH (glutathione), and myeloperoxidase (MPO) were also performed, at the second day after the wound induction. The work showed that NMP decreases the wound areas, after topical application, relatively to the Sham and Control groups. In addition, microscopic alterations were reduced and collagen deposition was increased, at the 7th and 12th days, in the 10% NMP group. While iNOS and COX-2 immunostainings and GSH contents increased, in relation to the Sham and Control groups, TBARS and MPO decreased. Altogether, the results showed NMP to improve the wound healing process, by upregulating iNOS and COX-2 activities, reducing lipid peroxidation and MPO activity, and increasing GSH contents. In addition, NMP certainly contributes to the increased collagen deposition. These data may stimulate translational studies dealing with the possible use of NMP from Sideroxylon obtusifolium or from other sources for the management of wound healing.


Asunto(s)
Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Extractos Vegetales/administración & dosificación , Prolina/administración & dosificación , Sapotaceae/química , Cicatrización de Heridas/efectos de los fármacos , Heridas y Lesiones/tratamiento farmacológico , Animales , Antiinflamatorios/química , Antioxidantes/química , Colágeno/genética , Colágeno/inmunología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/inmunología , Glutatión/inmunología , Humanos , Masculino , Ratones , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/inmunología , Peroxidasa/genética , Peroxidasa/inmunología , Extractos Vegetales/química , Prolina/análogos & derivados , Heridas y Lesiones/genética , Heridas y Lesiones/inmunología , Heridas y Lesiones/fisiopatología
11.
Oxid Med Cell Longev ; 2017: 2138169, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28713483

RESUMEN

Parkinson's disease (PD), a progressive neurological pathology, presents motor and nonmotor impairments. The objectives were to support data on exercise benefits to PD. Male Wistar rats were distributed into sham-operated (SO) and 6-OHDA-lesioned, both groups without and with exercise. The animals were subjected to treadmill exercises (14 days), 24 h after the stereotaxic surgery and striatal 6-OHDA injection. Those from no-exercise groups stayed on the treadmill for the same period and, afterwards, were subjected to behavioral tests and euthanized for neurochemical and immunohistochemical assays. The data, analyzed by ANOVA and Tukey post hoc test, were considered significant for p < 0.05. The results showed behavioral change improvements in the 6-OHDA group, after the treadmill exercise, evaluated by apomorphine rotational behavior, open field, and rota rod tests. The exercise reduced striatal dopaminergic neuronal loss and decreased the oxidative stress. In addition, significant increases in BDNF contents and in immunoreactive cells to TH and DAT were also observed, in striata of the 6-OHDA group with exercise, relatively to those with no exercise. We conclude that exercise improves behavior and dopaminergic neurotransmission in 6-OHDA-lesioned animals. The increased oxidative stress and decreased BDNF contents were also reversed, emphasizing the importance of exercise for the PD management.


Asunto(s)
Encéfalo/patología , Neuronas Dopaminérgicas/metabolismo , Prueba de Esfuerzo/métodos , Enfermedad de Parkinson/terapia , Animales , Humanos , Masculino , Estrés Oxidativo , Ratas , Ratas Wistar
12.
Phytomedicine ; 24: 14-23, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28160854

RESUMEN

BACKGROUND: Sideroxylon obtusifolium (Roem. & Schult.) T.D. Penn., Sapotaceae family, is a medicinal species native to the Brazilian Northeastern region. The plant is popularly used as an anti-inflammatory and hypoglycemic. PURPOSE: To evaluate the anti-inflammatory properties of the N-methyl-(2S,4R)-trans-4-hydroxy-l-proline (NMP) from S. obtusifolium leaves in models of inflammation and to clarify its action mechanisms. METHODS: Male Swiss mice were distributed intocontrols and groups treated with NMP (25, 50 and 100mg/kg, p.o.), indomethacin or morphine (reference drugs). The animals were subjected to the formalin, carrageenan-induced edema and peritonitis tests. Furthermore, peritoneal lavage and slices from edematous paws were used for histological and immunohistochemical (iNOS, TNF-alpha, COX-2 and NF-kB) assays. RESULTS: Decreases in licking time, in the 1st and mainly in the 2nd phases of the formalin test, were shown after NMP treatments. In addition, decreases (around 50%) in paw edema were noticed at the 3rd h. The HE staining of paw slices demonstrated a complete reversion of the increased PMN cell numberafter NMP treatment. Similarly, decreases higher than 70% were also demonstrated in PMN cells, in the peritoneal fluid. Furthermore, NMP significantly decreased iNOS, TNF-alpha, COX-2 and NF-kB immunoreactivities. CONCLUSIONS: We showed that S. obtusifolium presents a potent anti-inflammatory activity, due to the presence of the N-methyl-(2S,4R)-trans-4-hydroxy-l-proline(NMP) in the plant extract. This action is related to the inhibition by NMP of TNF-alpha and inflammatory enzymes.


Asunto(s)
Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Sapotaceae/química , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Brasil , Masculino , Ratones , Fitoterapia , Extractos Vegetales/farmacología , Hojas de la Planta/química
13.
Basic Clin Pharmacol Toxicol ; 119(6): 562-573, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27390215

RESUMEN

Ketamine (KET), a NMDA antagonist, exerts an antidepressant effect at subanaesthetic doses and possesses analgesic and anti-inflammatory activities. We evaluated the involvement of KET antinociceptive and anti-inflammatory effects with its antidepressant action. Male Swiss mice were subjected to formalin, carrageenan-induced paw oedema and forced swimming tests, for assessing antinociceptive, anti-inflammatory and antidepressant effects. The treatment groups were as follows: control, KET (2, 5 and 10 mg/kg), lithium (LI: 5 mg/kg) and KET2 + LI5 combination. Immunohistochemistry analyses (TNF-α, iNOS, COX-2 and GSK3) in oedematous paws were performed. KET5 and KET10 reduced licking times in neurogenic (22 and 38%) and inflammatory (67 and 78%) phases of the formalin test, respectively, as related to controls. While LI5 inhibited the second phase by 24%, the licking time was inhibited by 26 and 59% in the KET2 + LI5 group (first and second phases). Furthermore, oedema volumes were reduced by 37 and 45% in the KET5 and KET10 groups, respectively. Oedema reductions were 29% in the LI5 group and 48% in the KET2 + LI5 group. In the forced swimming test, there were 23, 38 and 53% decreases in the immobility time in KET2, KET5 and KET10 groups, respectively. While LI5 caused no significant effect, decreases of 52% were observed with KET2 + LI5. KET also decreased TNF-α, iNOS, COX-2 and GSK3 immunostainings in oedematous paws, effects intensified with KET2 + LI5. We showed that KET presents antinociceptive and anti-inflammatory effects associated with its antidepressant response. Furthermore, our results indicate the close involvement of GSK3 inhibition and blockade of inflammatory responses, in the antidepressant drug effect.


Asunto(s)
Antidepresivos/uso terapéutico , Depresión/prevención & control , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Ketamina/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Tejido Subcutáneo/efectos de los fármacos , Analgésicos/administración & dosificación , Analgésicos/uso terapéutico , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/uso terapéutico , Antidepresivos/administración & dosificación , Conducta Animal/efectos de los fármacos , Ciclooxigenasa 2/química , Ciclooxigenasa 2/metabolismo , Depresión/metabolismo , Depresión/patología , Relación Dosis-Respuesta a Droga , Quimioterapia Combinada , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Inmunohistoquímica , Ketamina/administración & dosificación , Litio/uso terapéutico , Masculino , Ratones , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/metabolismo , Inhibidores de Proteínas Quinasas/administración & dosificación , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Tejido Subcutáneo/metabolismo , Tejido Subcutáneo/patología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA