Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Nature ; 598(7879): 103-110, 2021 10.
Article En | MEDLINE | ID: mdl-34616066

Single-cell transcriptomics can provide quantitative molecular signatures for large, unbiased samples of the diverse cell types in the brain1-3. With the proliferation of multi-omics datasets, a major challenge is to validate and integrate results into a biological understanding of cell-type organization. Here we generated transcriptomes and epigenomes from more than 500,000 individual cells in the mouse primary motor cortex, a structure that has an evolutionarily conserved role in locomotion. We developed computational and statistical methods to integrate multimodal data and quantitatively validate cell-type reproducibility. The resulting reference atlas-containing over 56 neuronal cell types that are highly replicable across analysis methods, sequencing technologies and modalities-is a comprehensive molecular and genomic account of the diverse neuronal and non-neuronal cell types in the mouse primary motor cortex. The atlas includes a population of excitatory neurons that resemble pyramidal cells in layer 4 in other cortical regions4. We further discovered thousands of concordant marker genes and gene regulatory elements for these cell types. Our results highlight the complex molecular regulation of cell types in the brain and will directly enable the design of reagents to target specific cell types in the mouse primary motor cortex for functional analysis.


Epigenomics , Gene Expression Profiling , Motor Cortex/cytology , Neurons/classification , Single-Cell Analysis , Transcriptome , Animals , Atlases as Topic , Datasets as Topic , Epigenesis, Genetic , Female , Male , Mice , Motor Cortex/anatomy & histology , Neurons/cytology , Neurons/metabolism , Organ Specificity , Reproducibility of Results
2.
Sci Adv ; 6(31)2020 07 31.
Article En | MEDLINE | ID: mdl-32937591

Altered olfactory function is a common symptom of COVID-19, but its etiology is unknown. A key question is whether SARS-CoV-2 (CoV-2) - the causal agent in COVID-19 - affects olfaction directly, by infecting olfactory sensory neurons or their targets in the olfactory bulb, or indirectly, through perturbation of supporting cells. Here we identify cell types in the olfactory epithelium and olfactory bulb that express SARS-CoV-2 cell entry molecules. Bulk sequencing demonstrated that mouse, non-human primate and human olfactory mucosa expresses two key genes involved in CoV-2 entry, ACE2 and TMPRSS2. However, single cell sequencing revealed that ACE2 is expressed in support cells, stem cells, and perivascular cells, rather than in neurons. Immunostaining confirmed these results and revealed pervasive expression of ACE2 protein in dorsally-located olfactory epithelial sustentacular cells and olfactory bulb pericytes in the mouse. These findings suggest that CoV-2 infection of non-neuronal cell types leads to anosmia and related disturbances in odor perception in COVID-19 patients.


Coronavirus Infections/pathology , Olfaction Disorders/virology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , Serine Endopeptidases/metabolism , Smell/physiology , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/physiology , COVID-19 , Callithrix , Humans , Macaca , Mice , Olfaction Disorders/genetics , Olfactory Mucosa/cytology , Olfactory Mucosa/metabolism , Olfactory Receptor Neurons/metabolism , Pandemics , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2 , Serine Endopeptidases/genetics , Smell/genetics , Virus Internalization
...