Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
Genet Med ; : 101170, 2024 May 27.
Article En | MEDLINE | ID: mdl-38818797

PURPOSE: KBG syndrome (KBGS) is a rare neurodevelopmental syndrome caused by haploinsufficiency of ANKRD11. The childhood phenotype is extensively reported but limited for adults. Thus, we aimed to delineate the clinical features of KBGS. METHODS: We collected physician-reported data of adults with molecularly confirmed KBGS through an international collaboration. Moreover, we undertook a systematic literature review to determine the scope of previously reported data. RESULTS: The international collaboration identified 36 adults from 31 unrelated families with KBGS. Symptopms included mild/borderline intellectual disability (n=22); gross and/or fine motor difficulties (n=15); psychiatric and behavioral comorbidities including aggression, anxiety, reduced attention span, and autistic features (n=26); nonverbal (n=3), seizures with various seizure types and treatment responses (n=10); ophthalmological comorbidities (n=20). Cognitive regression during adulthood was reported once. Infrequent features included dilatation of the ascending aorta (n=2) and autoimmune conditions (n=4). Education, work, and residence varied and the diversity of professional and personal roles highlighted the range of abilities seen. The literature review identified 154 adults reported across the literature, and we have summarized the features across both datasets. CONCLUSION: Our study sheds light on the long-term neurodevelopmental outcomes, seizures, behavioral and psychiatric features, and education, work, and living arrangements for adults with KBGS.

3.
Eur J Hum Genet ; 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38355961

Translation elongation factor eEF1A2 constitutes the alpha subunit of the elongation factor-1 complex, responsible for the enzymatic binding of aminoacyl-tRNA to the ribosome. Since 2012, 21 pathogenic missense variants affecting EEF1A2 have been described in 42 individuals with a severe neurodevelopmental phenotype including epileptic encephalopathy and moderate to profound intellectual disability (ID), with neurological regression in some patients. Through international collaborative call, we collected 26 patients with EEF1A2 variants and compared them to the literature. Our cohort shows a significantly milder phenotype. 83% of the patients are walking (vs. 29% in the literature), and 84% of the patients have language skills (vs. 15%). Three of our patients do not have ID. Epilepsy is present in 63% (vs. 93%). Neurological examination shows a less severe phenotype with significantly less hypotonia (58% vs. 96%), and pyramidal signs (24% vs. 68%). Cognitive regression was noted in 4% (vs. 56% in the literature). Among individuals over 10 years, 56% disclosed neurocognitive regression, with a mean age of onset at 2 years. We describe 8 novel missense variants of EEF1A2. Modeling of the different amino-acid sites shows that the variants associated with a severe phenotype, and the majority of those associated with a moderate phenotype, cluster within the switch II region of the protein and thus may affect GTP exchange. In contrast, variants associated with milder phenotypes may impact secondary functions such as actin binding. We report the largest cohort of individuals with EEF1A2 variants thus far, allowing us to expand the phenotype spectrum and reveal genotype-phenotype correlations.

5.
Eur J Hum Genet ; 32(2): 200-208, 2024 Feb.
Article En | MEDLINE | ID: mdl-37853102

Mobile element insertions (MEIs) are a known cause of genetic disease but have been underexplored due to technical limitations of genetic testing methods. Various bioinformatic tools have been developed to identify MEIs in Next Generation Sequencing data. However, most tools have been developed specifically for genome sequencing (GS) data rather than exome sequencing (ES) data, which remains more widely used for routine diagnostic testing. In this study, we benchmarked six MEI detection tools (ERVcaller, MELT, Mobster, SCRAMble, TEMP2 and xTea) on ES data and on GS data from publicly available genomic samples (HG002, NA12878). For all the tools we evaluated sensitivity and precision of different filtering strategies. Results show that there were substantial differences in tool performance between ES and GS data. MELT performed best with ES data and its combination with SCRAMble increased substantially the detection rate of MEIs. By applying both tools to 10,890 ES samples from Solve-RD and 52,624 samples from Radboudumc we were able to diagnose 10 patients who had remained undiagnosed by conventional ES analysis until now. Our study shows that MELT and SCRAMble can be used reliably to identify clinically relevant MEIs in ES data. This may lead to an additional diagnosis for 1 in 3000 to 4000 patients in routine clinical ES.


Exome , Rare Diseases , Humans , Rare Diseases/genetics , Benchmarking , Exome Sequencing , Genetic Testing/methods
6.
Nat Commun ; 14(1): 6845, 2023 10 27.
Article En | MEDLINE | ID: mdl-37891200

The short lengths of short-read sequencing reads challenge the analysis of paralogous genomic regions in exome and genome sequencing data. Most genetic variants within these homologous regions therefore remain unidentified in standard analyses. Here, we present a method (Chameleolyser) that accurately identifies single nucleotide variants and small insertions/deletions (SNVs/Indels), copy number variants and ectopic gene conversion events in duplicated genomic regions using whole-exome sequencing data. Application to a cohort of 41,755 exome samples yields 20,432 rare homozygous deletions and 2,529,791 rare SNVs/Indels, of which we show that 338,084 are due to gene conversion events. None of the SNVs/Indels are detectable using regular analysis techniques. Validation by high-fidelity long-read sequencing in 20 samples confirms >88% of called variants. Focusing on variation in known disease genes leads to a direct molecular diagnosis in 25 previously undiagnosed patients. Our method can readily be applied to existing exome data.


Exome , Polymorphism, Single Nucleotide , Humans , Exome/genetics , INDEL Mutation , DNA Copy Number Variations , Systems Analysis , High-Throughput Nucleotide Sequencing/methods
8.
Nat Genet ; 55(9): 1598-1607, 2023 09.
Article En | MEDLINE | ID: mdl-37550531

Several molecular and phenotypic algorithms exist that establish genotype-phenotype correlations, including facial recognition tools. However, no unified framework that investigates both facial data and other phenotypic data directly from individuals exists. We developed PhenoScore: an open-source, artificial intelligence-based phenomics framework, combining facial recognition technology with Human Phenotype Ontology data analysis to quantify phenotypic similarity. Here we show PhenoScore's ability to recognize distinct phenotypic entities by establishing recognizable phenotypes for 37 of 40 investigated syndromes against clinical features observed in individuals with other neurodevelopmental disorders and show it is an improvement on existing approaches. PhenoScore provides predictions for individuals with variants of unknown significance and enables sophisticated genotype-phenotype studies by testing hypotheses on possible phenotypic (sub)groups. PhenoScore confirmed previously known phenotypic subgroups caused by variants in the same gene for SATB1, SETBP1 and DEAF1 and provides objective clinical evidence for two distinct ADNP-related phenotypes, already established functionally.


Artificial Intelligence , Matrix Attachment Region Binding Proteins , Humans , Phenotype , Algorithms , Machine Learning , Biological Variation, Population , DNA-Binding Proteins , Transcription Factors
9.
Nat Genet ; 55(7): 1149-1163, 2023 07.
Article En | MEDLINE | ID: mdl-37386251

Hereditary congenital facial paresis type 1 (HCFP1) is an autosomal dominant disorder of absent or limited facial movement that maps to chromosome 3q21-q22 and is hypothesized to result from facial branchial motor neuron (FBMN) maldevelopment. In the present study, we report that HCFP1 results from heterozygous duplications within a neuron-specific GATA2 regulatory region that includes two enhancers and one silencer, and from noncoding single-nucleotide variants (SNVs) within the silencer. Some SNVs impair binding of NR2F1 to the silencer in vitro and in vivo and attenuate in vivo enhancer reporter expression in FBMNs. Gata2 and its effector Gata3 are essential for inner-ear efferent neuron (IEE) but not FBMN development. A humanized HCFP1 mouse model extends Gata2 expression, favors the formation of IEEs over FBMNs and is rescued by conditional loss of Gata3. These findings highlight the importance of temporal gene regulation in development and of noncoding variation in rare mendelian disease.


Facial Paralysis , Animals , Mice , Facial Paralysis/genetics , Facial Paralysis/congenital , Facial Paralysis/metabolism , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , Motor Neurons/metabolism , Neurogenesis , Neurons, Efferent
10.
HGG Adv ; 4(3): 100200, 2023 07 13.
Article En | MEDLINE | ID: mdl-37216008

Split-hand/foot malformation (SHFM) is a congenital limb defect most typically presenting with median clefts in hands and/or feet, that can occur in a syndromic context as well as in isolated form. SHFM is caused by failure to maintain normal apical ectodermal ridge function during limb development. Although several genes and contiguous gene syndromes are implicated in the monogenic etiology of isolated SHFM, the disorder remains genetically unexplained for many families and associated genetic loci. We describe a family with isolated X-linked SHFM, for which the causative variant could be detected after a diagnostic journey of 20 years. We combined well-established approaches including microarray-based copy number variant analysis and fluorescence in situ hybridization coupled with optical genome mapping and whole genome sequencing. This strategy identified a complex structural variant (SV) comprising a 165-kb gain of 15q26.3 material ([GRCh37/hg19] chr15:99795320-99960362dup) inserted in inverted position at the site of a 38-kb deletion on Xq27.1 ([GRCh37/hg19] chrX:139481061-139518989del). In silico analysis suggested that the SV disrupts the regulatory framework on the X chromosome and may lead to SOX3 misexpression. We hypothesize that SOX3 dysregulation in the developing limb disturbed the fine balance between morphogens required for maintaining AER function, resulting in SHFM in this family.


Limb Deformities, Congenital , Humans , In Situ Hybridization, Fluorescence , Limb Deformities, Congenital/genetics , Genetic Loci , SOXB1 Transcription Factors/genetics
11.
Am J Med Genet A ; 191(5): 1301-1324, 2023 05.
Article En | MEDLINE | ID: mdl-36806455

The collection of the Narrenturm in Vienna houses and maintains more than 50,000 objects including approximately 1200 teratological specimens; making it one of the biggest collections of specimens from human origin in Europe. The existence of this magnificent collection-representing an important resource for dysmorphology research, mostly awaiting contemporary diagnoses-is not widely known in the scientific community. Here, we show that the Narrenturm harbors a wealth of specimens with (exceptionally) rare congenital anomalies. These museums can be seen as physical repositories of human malformation, covering hundreds of years of dedicated collecting and preserving, thereby creating unique settings that can be used to expand our knowledge of developmental conditions that have to be preserved for future generations of scientists.


Museums , Teratology , Humans , Austria , Europe , Physical Examination
12.
Genet Med ; 25(4): 100018, 2023 04.
Article En | MEDLINE | ID: mdl-36681873

PURPOSE: Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the "ClinVar low-hanging fruit" reanalysis, reasons for the failure of previous analyses, and lessons learned. METHODS: Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. RESULTS: We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). CONCLUSION: The "ClinVar low-hanging fruit" analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock.


Intellectual Disability , Humans , Exome Sequencing , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Alleles , Genotype
13.
Genet Med ; 24(10): 2051-2064, 2022 10.
Article En | MEDLINE | ID: mdl-35833929

PURPOSE: Although haploinsufficiency of ANKRD11 is among the most common genetic causes of neurodevelopmental disorders, the role of rare ANKRD11 missense variation remains unclear. We characterized clinical, molecular, and functional spectra of ANKRD11 missense variants. METHODS: We collected clinical information of individuals with ANKRD11 missense variants and evaluated phenotypic fit to KBG syndrome. We assessed pathogenicity of variants through in silico analyses and cell-based experiments. RESULTS: We identified 20 unique, mostly de novo, ANKRD11 missense variants in 29 individuals, presenting with syndromic neurodevelopmental disorders similar to KBG syndrome caused by ANKRD11 protein truncating variants or 16q24.3 microdeletions. Missense variants significantly clustered in repression domain 2 at the ANKRD11 C-terminus. Of the 10 functionally studied missense variants, 6 reduced ANKRD11 stability. One variant caused decreased proteasome degradation and loss of ANKRD11 transcriptional activity. CONCLUSION: Our study indicates that pathogenic heterozygous ANKRD11 missense variants cause the clinically recognizable KBG syndrome. Disrupted transrepression capacity and reduced protein stability each independently lead to ANKRD11 loss-of-function, consistent with haploinsufficiency. This highlights the diagnostic relevance of ANKRD11 missense variants, but also poses diagnostic challenges because the KBG-associated phenotype may be mild and inherited pathogenic ANKRD11 (missense) variants are increasingly observed, warranting stringent variant classification and careful phenotyping.


Abnormalities, Multiple , Bone Diseases, Developmental , Intellectual Disability , Repressor Proteins , Tooth Abnormalities , Abnormalities, Multiple/genetics , Bone Diseases, Developmental/etiology , Bone Diseases, Developmental/genetics , Chromosome Deletion , Facies , Humans , Intellectual Disability/genetics , Mutation, Missense , Phenotype , Proteasome Endopeptidase Complex/genetics , Repressor Proteins/genetics , Tooth Abnormalities/diagnosis , Transcription Factors/genetics
14.
Eur J Med Genet ; 65(1): 104402, 2022 Jan.
Article En | MEDLINE | ID: mdl-34863918

Almost half of all individuals affected by intellectual disability (ID) remain undiagnosed. In the Solve-RD project, exome sequencing (ES) datasets from unresolved individuals with (syndromic) ID (n = 1,472 probands) are systematically reanalyzed, starting from raw sequencing files, followed by genome-wide variant calling and new data interpretation. This strategy led to the identification of a disease-causing de novo missense variant in TUBB3 in a girl with severe developmental delay, secondary microcephaly, brain imaging abnormalities, high hypermetropia, strabismus and short stature. Interestingly, the TUBB3 variant could only be identified through reanalysis of ES data using a genome-wide variant calling approach, despite being located in protein coding sequence. More detailed analysis revealed that the position of the variant within exon 5 of TUBB3 was not targeted by the enrichment kit, although consistent high-quality coverage was obtained at this position, resulting from nearby targets that provide off-target coverage. In the initial analysis, variant calling was restricted to the exon targets ± 200 bases, allowing the variant to escape detection by the variant calling algorithm. This phenomenon may potentially occur more often, as we determined that 36 established ID genes have robust off-target coverage in coding sequence. Moreover, within these regions, for 17 genes (likely) pathogenic variants have been identified before. Therefore, this clinical report highlights that, although compute-intensive, performing genome-wide variant calling instead of target-based calling may lead to the detection of diagnostically relevant variants that would otherwise remain unnoticed.


Intellectual Disability/genetics , Tubulin/genetics , Adolescent , Brain/abnormalities , Developmental Disabilities/genetics , Face/abnormalities , Female , Humans , Microcephaly/genetics , Mutation, Missense , Strabismus/genetics , Exome Sequencing
15.
Am J Hum Genet ; 108(11): 2112-2129, 2021 11 04.
Article En | MEDLINE | ID: mdl-34626534

Upregulated signal flow through RAS and the mitogen-associated protein kinase (MAPK) cascade is the unifying mechanistic theme of the RASopathies, a family of disorders affecting development and growth. Pathogenic variants in more than 20 genes have been causally linked to RASopathies, the majority having a dominant role in promoting enhanced signaling. Here, we report that SPRED2 loss of function is causally linked to a recessive phenotype evocative of Noonan syndrome. Homozygosity for three different variants-c.187C>T (p.Arg63∗), c.299T>C (p.Leu100Pro), and c.1142_1143delTT (p.Leu381Hisfs∗95)-were identified in four subjects from three families. All variants severely affected protein stability, causing accelerated degradation, and variably perturbed SPRED2 functional behavior. When overexpressed in cells, all variants were unable to negatively modulate EGF-promoted RAF1, MEK, and ERK phosphorylation, and time-course experiments in primary fibroblasts (p.Leu100Pro and p.Leu381Hisfs∗95) documented an increased and prolonged activation of the MAPK cascade in response to EGF stimulation. Morpholino-mediated knockdown of spred2a and spred2b in zebrafish induced defects in convergence and extension cell movements indicating upregulated RAS-MAPK signaling, which were rescued by expressing wild-type SPRED2 but not the SPRED2Leu381Hisfs∗95 protein. The clinical phenotype of the four affected individuals included developmental delay, intellectual disability, cardiac defects, short stature, skeletal anomalies, and a typical facial gestalt as major features, without the occurrence of the distinctive skin signs characterizing Legius syndrome. These features, in part, characterize the phenotype of Spred2-/- mice. Our findings identify the second recessive form of Noonan syndrome and document pleiotropic consequences of SPRED2 loss of function in development.


Loss of Function Mutation , Noonan Syndrome/genetics , Phenotype , Repressor Proteins/genetics , Alleles , Animals , COS Cells , Chlorocebus aethiops , HEK293 Cells , Humans , MAP Kinase Signaling System , Mice , Mice, Knockout , Zebrafish
17.
Eur J Hum Genet ; 29(9): 1359-1368, 2021 09.
Article En | MEDLINE | ID: mdl-34075211

The genetic etiology of intellectual disability remains elusive in almost half of all affected individuals. Within the Solve-RD consortium, systematic re-analysis of whole exome sequencing (WES) data from unresolved cases with (syndromic) intellectual disability (n = 1,472 probands) was performed. This re-analysis included variant calling of mitochondrial DNA (mtDNA) variants, although mtDNA is not specifically targeted in WES. We identified a functionally relevant mtDNA variant in MT-TL1 (NC_012920.1:m.3291T > C; NC_012920.1:n.62T > C), at a heteroplasmy level of 22% in whole blood, in a 23-year-old male with severe intellectual disability, epilepsy, episodic headaches with emesis, spastic tetraparesis, brain abnormalities, and feeding difficulties. Targeted validation in blood and urine supported pathogenicity, with heteroplasmy levels of 23% and 58% in index, and 4% and 17% in mother, respectively. Interestingly, not all phenotypic features observed in the index have been previously linked to this MT-TL1 variant, suggesting either broadening of the m.3291T > C-associated phenotype, or presence of a co-occurring disorder. Hence, our case highlights the importance of underappreciated mtDNA variants identifiable from WES data, especially for cases with atypical mitochondrial phenotypes and their relatives in the maternal line.


Epilepsy/genetics , Intellectual Disability/genetics , Quadriplegia/genetics , RNA, Transfer, Leu/genetics , Epilepsy/pathology , Humans , Intellectual Disability/pathology , Male , Mutation , Quadriplegia/pathology , Exome Sequencing , Young Adult
18.
Am J Hum Genet ; 108(3): 502-516, 2021 03 04.
Article En | MEDLINE | ID: mdl-33596411

Deletion 1p36 (del1p36) syndrome is the most common human disorder resulting from a terminal autosomal deletion. This condition is molecularly and clinically heterogeneous. Deletions involving two non-overlapping regions, known as the distal (telomeric) and proximal (centromeric) critical regions, are sufficient to cause the majority of the recurrent clinical features, although with different facial features and dysmorphisms. SPEN encodes a transcriptional repressor commonly deleted in proximal del1p36 syndrome and is located centromeric to the proximal 1p36 critical region. Here, we used clinical data from 34 individuals with truncating variants in SPEN to define a neurodevelopmental disorder presenting with features that overlap considerably with those of proximal del1p36 syndrome. The clinical profile of this disease includes developmental delay/intellectual disability, autism spectrum disorder, anxiety, aggressive behavior, attention deficit disorder, hypotonia, brain and spine anomalies, congenital heart defects, high/narrow palate, facial dysmorphisms, and obesity/increased BMI, especially in females. SPEN also emerges as a relevant gene for del1p36 syndrome by co-expression analyses. Finally, we show that haploinsufficiency of SPEN is associated with a distinctive DNA methylation episignature of the X chromosome in affected females, providing further evidence of a specific contribution of the protein to the epigenetic control of this chromosome, and a paradigm of an X chromosome-specific episignature that classifies syndromic traits. We conclude that SPEN is required for multiple developmental processes and SPEN haploinsufficiency is a major contributor to a disorder associated with deletions centromeric to the previously established 1p36 critical regions.


Chromosome Disorders/genetics , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, X/genetics , DNA-Binding Proteins/genetics , RNA-Binding Proteins/genetics , Adolescent , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Child , Child, Preschool , Chromosome Deletion , Chromosome Disorders/physiopathology , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Female , Haploinsufficiency/genetics , Humans , Intellectual Disability/genetics , Intellectual Disability/physiopathology , Male , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/physiopathology , Phenotype , Young Adult
19.
Am J Hum Genet ; 108(2): 346-356, 2021 02 04.
Article En | MEDLINE | ID: mdl-33513338

Whereas large-scale statistical analyses can robustly identify disease-gene relationships, they do not accurately capture genotype-phenotype correlations or disease mechanisms. We use multiple lines of independent evidence to show that different variant types in a single gene, SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical evaluation of 42 individuals carrying SATB1 variants identified overt genotype-phenotype relationships, associated with different pathophysiological mechanisms, established by functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in stronger chromatin binding, increased transcriptional repression, and a severe phenotype. In contrast, variants predicted to result in haploinsufficiency are associated with a milder clinical presentation. A similarly mild phenotype is observed for individuals with premature protein truncating variants that escape nonsense-mediated decay, which are transcriptionally active but mislocalized in the cell. Our results suggest that in-depth mutation-specific genotype-phenotype studies are essential to capture full disease complexity and to explain phenotypic variability.


Matrix Attachment Region Binding Proteins/genetics , Mutation , Neurodevelopmental Disorders/genetics , Chromatin/metabolism , Female , Genetic Association Studies , Haploinsufficiency , Humans , Male , Matrix Attachment Region Binding Proteins/chemistry , Matrix Attachment Region Binding Proteins/metabolism , Models, Molecular , Mutation, Missense , Protein Binding , Protein Domains , Transcription, Genetic
20.
Am J Med Genet A ; 185(1): 119-133, 2021 01.
Article En | MEDLINE | ID: mdl-33098347

Dubowitz syndrome (DubS) is considered a recognizable syndrome characterized by a distinctive facial appearance and deficits in growth and development. There have been over 200 individuals reported with Dubowitz or a "Dubowitz-like" condition, although no single gene has been implicated as responsible for its cause. We have performed exome (ES) or genome sequencing (GS) for 31 individuals clinically diagnosed with DubS. After genome-wide sequencing, rare variant filtering and computational and Mendelian genomic analyses, a presumptive molecular diagnosis was made in 13/27 (48%) families. The molecular diagnoses included biallelic variants in SKIV2L, SLC35C1, BRCA1, NSUN2; de novo variants in ARID1B, ARID1A, CREBBP, POGZ, TAF1, HDAC8, and copy-number variation at1p36.11(ARID1A), 8q22.2(VPS13B), Xp22, and Xq13(HDAC8). Variants of unknown significance in known disease genes, and also in genes of uncertain significance, were observed in 7/27 (26%) additional families. Only one gene, HDAC8, could explain the phenotype in more than one family (N = 2). All but two of the genomic diagnoses were for genes discovered, or for conditions recognized, since the introduction of next-generation sequencing. Overall, the DubS-like clinical phenotype is associated with extensive locus heterogeneity and the molecular diagnoses made are for emerging clinical conditions sharing characteristic features that overlap the DubS phenotype.


Eczema/diagnosis , Eczema/genetics , Genetic Predisposition to Disease , Growth Disorders/diagnosis , Growth Disorders/genetics , Histone Deacetylases/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Microcephaly/diagnosis , Microcephaly/genetics , Repressor Proteins/genetics , Adolescent , Child , Child, Preschool , DNA Copy Number Variations/genetics , Eczema/pathology , Exome/genetics , Facies , Female , Genome, Human/genetics , Genomics/methods , Growth Disorders/pathology , Humans , Infant , Intellectual Disability/pathology , Male , Microcephaly/pathology , Phenotype , Exome Sequencing
...