Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Thromb Haemost ; 22(7): 2027-2038, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38574861

RESUMEN

BACKGROUND: Endothelial colony-forming cells (ECFCs) derived from patients can be used to investigate pathogenic mechanisms of vascular diseases like von Willebrand disease. Considerable phenotypic heterogeneity has been observed between ECFC clones derived from healthy donors. This heterogeneity needs to be well understood in order to use ECFCs as endothelial models for disease. OBJECTIVES: Therefore, we aimed to determine phenotypic and gene expression differences between control ECFCs. METHODS: A total of 34 ECFC clones derived from 16 healthy controls were analyzed. The transcriptome of a selection of ECFC clones (n = 15) was analyzed by bulk RNA sequencing and gene set enrichment analysis. Gene expression was measured in all ECFC clones by quantitative polymerase chain reaction. Phenotypic profiling was performed and migration speed of the ECFCs was measured using confocal microscopy, followed by automated quantification of cell morphometrics and migration speed. RESULTS: Through hierarchical clustering of RNA expression profiles, we could distinguish 2 major clusters within the ECFC cohort. Major differences were associated with proliferation and migration in cluster 1 and inflammation and endothelial-to-mesenchymal transition in cluster 2. Phenotypic profiling showed significantly more and smaller ECFCs in cluster 1, which contained more and longer Weibel-Palade bodies. Migration speed in cluster 1 was also significantly higher. CONCLUSION: We observed a range of different RNA expression patterns between ECFC clones, mostly associated with inflammation and clear differences in Weibel-Palade body count and structure. We developed a quantitative polymerase chain reaction panel that can be used for the characterization of ECFC clones, which is essential for the correct analysis of pathogenic mechanisms in vascular disorders.


Asunto(s)
Movimiento Celular , Perfilación de la Expresión Génica , Inflamación , Fenotipo , Transcriptoma , Humanos , Inflamación/genética , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/patología , Transición Epitelial-Mesenquimal , Proliferación Celular , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/patología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Transcripción Genética
2.
PLoS One ; 19(2): e0297465, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38394102

RESUMEN

BACKGROUND: Endothelial cells generated from induced pluripotent stem cells (hiPSC-ECs) show the majority of endothelial cell characteristics and markers, such as cobblestone morphology and the expression of VEGF and VE-cadherin. However, these cells are failing to show a mature endothelial cell phenotype, which is represented by the low expression and production of von Willebrand Factor (VWF) leading to the round morphology of the Weibel Palade Bodies (WPBs). The aim of this study was to improve the maturation process of hiPSC-ECs and to increase the levels of VWF. METHODS: hiPSC-ECs were differentiated by a standard differentiation protocol from hiPSCs generated from healthy control donors. To induce maturation, the main focus was to increase the expression and/or production of VWF by the adjustment of potential parameters influencing differentiation and maturation. We also compared alternative differentiation protocols. Cells were analyzed for the expression of endothelial cell markers, WPB structure, and the production and secretion of VWF by flow cytometry, confocal microscopy and ELISA. RESULTS: The generated hiPSC-ECs have typical endothelial cell surface expression profiles, with low expression levels of non-endothelial markers as expected. Co-culture with pericytes, varying concentrations and timing of differentiation factors, applying some level of flow, and the addition of HDAC inhibitors did not substantially improve maturation of hiPSC-ECs. Transfection with the transcription factor ETV2 to induce a faster hiPSC-EC differentiation process resulted in a limited increase in VWF production, secretion, and elongation of WPB structure. Alternative differentiation protocols had limited effect. CONCLUSION: hiPSCs-ECs have the potential to show a more mature endothelial phenotype with elongated WPBs after >30 days in culture. However, this comes with limitations as there are very few cells detected, and cells are deteriorating after being in culture for extended periods of time.


Asunto(s)
Células Endoteliales , Células Madre Pluripotentes Inducidas , Humanos , Células Endoteliales/metabolismo , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo , Diferenciación Celular , Cuerpos de Weibel-Palade/metabolismo , Factores de Transcripción/metabolismo
3.
J Thromb Haemost ; 18(10): 2721-2731, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32654420

RESUMEN

BACKGROUND: Endothelial colony forming cells (ECFCs) derived from peripheral blood can be used to analyze the pathophysiology of vascular diseases ex vivo. However, heterogeneity is observed between ECFC clones and this variability needs to be understood and standardized for ECFCs to be used as a cell model for applications in vascular studies. OBJECTIVE: Determine reference characteristics of healthy control ECFCs to generate a valid ex vivo model for vascular disease. METHODS: Putative ECFCs (n = 47) derived from 21 individual healthy subjects were studied for cell morphology and specific cell characteristics. Clones were analyzed for the production and secretion of von Willebrand factor (VWF), cell proliferation, and the expression of endothelial cell markers. RESULTS: Based on morphology, clones were categorized into three groups. Group 1 consisted of clones with classic endothelial cell morphology, whereas groups 2 and 3 contained less condensed cells with increasing cell sizes. All clones had comparable endothelial cell surface expression profiles, with low levels of non-endothelial markers. However, a decrease in CD31 and a group-related increase in CD309 and CD45 expression, combined with a decrease in cell proliferation and VWF production and secretion, was observed in clones in group 3 and to a lesser extent in group 2. CONCLUSIONS: We observed group-related variations in endothelial cell characteristics when clones lacked the classic endothelial cell morphology. Despite this variation, clones in all groups expressed endothelial cell surface markers. Provided that clones with similar characteristics are compared, we believe ECFCs are a valid ex vivo model to study vascular disease.


Asunto(s)
Células Endoteliales , Enfermedades Vasculares , Membrana Celular , Proliferación Celular , Células Cultivadas , Estado de Salud , Humanos , Neovascularización Fisiológica , Factor de von Willebrand
4.
J Thromb Haemost ; 17(9): 1544-1554, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31265169

RESUMEN

Essentials Endothelial colony forming cells (ECFCs) are a powerful tool to study vascular diseases ex vivo. Separate ECFC lines show variations in morphology and von Willebrand factor-related parameters. Maximum cell density is correlated with von Willebrand factor expression in ECFCs. Variations in ECFC lines are dependent on the age and mesenchymal state of the cells. ABSTRACT: Background Endothelial colony forming cells (ECFCs) are cultured endothelial cells derived from peripheral blood. ECFCs are a powerful tool to study pathophysiological mechanisms underlying vascular diseases, including von Willebrand disease. In prior research, however, large variations between ECFC lines were observed in, among others, von Willebrand factor (VWF) expression. Objective Understand the relation between phenotypic characteristics and VWF-related parameters of healthy control ECFCs. Methods ECFC lines (n = 16) derived from six donors were studied at maximum cell density. Secreted and intracellular VWF antigen were measured by ELISA. The angiogenic capacity of ECFCs was investigated by the Matrigel tube formation assay. Differences in expression of genes involved in angiogenesis, aging, and endothelial to mesenchymal transition (EndoMT) were measured by quantitative PCR. Results Different ECFC lines show variable morphologies and cell density at maximum confluency and cell lines with a low maximum cell density show a mixed and more mesenchymal phenotype. We identified a significant positive correlation between maximum cell density and VWF production, both at protein and mRNA level. Also, significant correlations were observed between maximum cell density and several angiogenic, aging and EndoMT parameters. Conclusions We observed variations in morphology, maximum cell density, VWF production, and angiogenic potential between healthy control ECFCs. These variations seem to be attributable to differences in aging and EndoMT. Because variations correlate with cell density, we believe that ECFCs maintain a powerful tool to study vascular diseases. It is however important to compare cell lines with the same characteristics and perform experiments at maximum cell density.


Asunto(s)
Células Progenitoras Endoteliales/metabolismo , Factor de von Willebrand/metabolismo , Recuento de Células , Forma de la Célula , Transdiferenciación Celular , Células Cultivadas , Senescencia Celular , Colágeno , Medios de Cultivo Condicionados/química , Combinación de Medicamentos , Células Progenitoras Endoteliales/ultraestructura , Expresión Génica , Humanos , Laminina , Mesodermo/citología , Neovascularización Fisiológica , Proteoglicanos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Cuerpos de Weibel-Palade/química , Factor de von Willebrand/análisis , Factor de von Willebrand/genética
5.
Hemasphere ; 3(5): e297, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31942548

RESUMEN

Von Willebrand factor (VWF) plays an essential role in primary hemostasis and is exclusively synthesized and stored in endothelial cells and megakaryocytes. Upon vascular injury, VWF is released into the circulation where this multimeric protein is required for platelet adhesion. Defects of VWF lead to the most common inherited bleeding disorder von Willebrand disease (VWD). Three different types of VWD exist, presenting with varying degrees of bleeding tendencies. The pathophysiology of VWD can be investigated by examining the synthesis, storage and secretion in VWF producing cells. These cells can either be primary VWF producing cells or transfected heterologous cell models. For many years transfected heterologous cells have been used successfully to elucidate many aspects of VWF synthesis. However, those cells do not fully reflect the characteristics of primary cells. Obtaining primary endothelial cells or megakaryocytes with a VWD phenotype, requires invasive procedures, such as vessel collection or a bone marrow biopsy. A more recent and promising development is the isolation of endothelial colony forming cells (ECFCs) from peripheral blood as a true-to-nature cell model. Alternatively, various animal models are available but limiting, therefore, new approaches are needed to study VWD and other bleeding disorders. A potential versatile source of endothelial cells and megakaryocytes could be induced pluripotent stem cells (iPSCs). This review gives an overview of models that are available to study VWD and VWF and will discuss novel approaches that can be considered to improve the understanding of the structural and functional mechanisms underlying this disease.

6.
Stem Cells ; 36(6): 822-833, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29396901

RESUMEN

The canonical Wnt/ß-catenin pathway is crucial for early embryonic patterning, tissue homeostasis, and regeneration. While canonical Wnt/ß-catenin stimulation has been used extensively to modulate pluripotency and differentiation of pluripotent stem cells (PSCs), the mechanism of these two seemingly opposing roles has not been fully characterized and is currently largely attributed to activation of nuclear Wnt target genes. Here, we show that low levels of Wnt stimulation via ectopic expression of Wnt1 or administration of glycogen synthase kinase-3 inhibitor CHIR99021 significantly increases PSC differentiation into neurons, cardiomyocytes and early endodermal intermediates. Our data indicate that enhanced differentiation outcomes are not mediated through activation of traditional Wnt target genes but by ß-catenin's secondary role as a binding partner of membrane bound cadherins ultimately leading to the activation of developmental genes. In summary, fine-tuning of Wnt signaling to subthreshold levels for detectable nuclear ß-catenin function appears to act as a switch to enhance differentiation of PSCs into multiple lineages. Our observations highlight a mechanism by which Wnt/ß-catenin signaling can achieve dosage dependent dual roles in regulating self-renewal and differentiation. Stem Cells 2018;36:822-833.


Asunto(s)
Células Madre Pluripotentes/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/genética , Animales , Diferenciación Celular , Humanos , Ratones , Transducción de Señal
7.
Methods Mol Biol ; 1492: 147-153, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27822861

RESUMEN

Multiallelic copy number variants are genomic loci that can be present in a range of different copy numbers between individuals. High or low copy numbers of specific genes have been associated with different diseases. Precise genotyping of these loci can be complicated, and relies on accurate assays. Multiplex ligation-dependent probe amplification (MLPA) is a PCR-based approach that allows copy number determination of up to 50 genomic loci in a single reaction. In this chapter, we outline the basic protocol, with a particular emphasis on the appropriate approach to accurately genotype multiallelic copy numbers.


Asunto(s)
Alelos , Variaciones en el Número de Copia de ADN , Genotipo , Reacción en Cadena de la Polimerasa Multiplex/métodos , Humanos
8.
Proc Natl Acad Sci U S A ; 112(5): 1535-40, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25605927

RESUMEN

Inflammation is critical for host defense, but without appropriate control, it can cause chronic disease or even provoke fatal responses. Here we identify a mechanism that limits the inflammatory response. Probing the responses of macrophages to the key sensory Toll-like receptors, we identify that the Broad-complex, Tramtrack and Bric-a-brac/poxvirus and zinc finger (BTB/POZ), transcriptional regulator promyelocytic leukemia zinc finger (PLZF) limits the expression of inflammatory gene products. In accord with this finding, PLZF-deficient animals express higher levels of potent inflammatory cytokines and mount exaggerated inflammatory responses to infectious stimuli. Temporal quantitation of inflammatory gene transcripts shows increased gene induction in the absence of PLZF. Genome-wide analysis of histone modifications distinguish that PLZF establishes basal activity states of early response genes to maintain immune homeostasis and limit damaging inflammation. We show that PLZF stabilizes a corepressor complex that encompasses histone deacetylase activity to control chromatin. Together with our previous demonstration that PLZF promotes the antiviral response, these results suggest a strategy that could realize one of the major goals of immune therapy to retain immune resistance to pathogens while curbing damaging inflammation.


Asunto(s)
Cromatina/metabolismo , Inflamación/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Transducción de Señal , Animales , Infecciones Bacterianas/metabolismo , Inmunoprecipitación de Cromatina , Transferencia Resonante de Energía de Fluorescencia , Histona Desacetilasas/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína de la Leucemia Promielocítica con Dedos de Zinc , Reacción en Cadena en Tiempo Real de la Polimerasa
9.
PLoS One ; 9(6): e98330, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24887064

RESUMEN

BACKGROUND: Originating from Primordial Germ Cells/gonocytes and developing via a precursor lesion called Carcinoma In Situ (CIS), Germ Cell Cancers (GCC) are the most common cancer in young men, subdivided in seminoma (SE) and non-seminoma (NS). During physiological germ cell formation/maturation, epigenetic processes guard homeostasis by regulating the accessibility of the DNA to facilitate transcription. Epigenetic deregulation through genetic and environmental parameters (i.e. genvironment) could disrupt embryonic germ cell development, resulting in delayed or blocked maturation. This potentially facilitates the formation of CIS and progression to invasive GCC. Therefore, determining the epigenetic and functional genomic landscape in GCC cell lines could provide insight into the pathophysiology and etiology of GCC and provide guidance for targeted functional experiments. RESULTS: This study aims at identifying epigenetic footprints in SE and EC cell lines in genome-wide profiles by studying the interaction between gene expression, DNA CpG methylation and histone modifications, and their function in the pathophysiology and etiology of GCC. Two well characterized GCC-derived cell lines were compared, one representative for SE (TCam-2) and the other for EC (NCCIT). Data were acquired using the Illumina HumanHT-12-v4 (gene expression) and HumanMethylation450 BeadChip (methylation) microarrays as well as ChIP-sequencing (activating histone modifications (H3K4me3, H3K27ac)). Results indicate known germ cell markers not only to be differentiating between SE and NS at the expression level, but also in the epigenetic landscape. CONCLUSION: The overall similarity between TCam-2/NCCIT support an erased embryonic germ cell arrested in early gonadal development as common cell of origin although the exact developmental stage from which the tumor cells are derived might differ. Indeed, subtle difference in the (integrated) epigenetic and expression profiles indicate TCam-2 to exhibit a more germ cell-like profile, whereas NCCIT shows a more pluripotent phenotype. The results provide insight into the functional genome in GCC cell lines.


Asunto(s)
Carcinoma Embrionario/genética , Epigénesis Genética , Perfilación de la Expresión Génica , Neoplasias de Células Germinales y Embrionarias/genética , Seminoma/genética , Carcinoma Embrionario/patología , Línea Celular Tumoral , Metilación de ADN , Humanos , Neoplasias de Células Germinales y Embrionarias/patología , Seminoma/patología
10.
PLoS One ; 7(7): e40858, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22815844

RESUMEN

Patients with Disorders of Sex Development (DSD), especially those with gonadal dysgenesis and hypovirilization are at risk of developing malignant type II germ cell tumors/cancer (GCC) (seminoma/dysgerminoma and nonseminoma), with either carcinoma in situ (CIS) or gonadoblastoma (GB) as precursor lesion. In 10-15% of 46,XY gonadal dysgenesis cases (i.e., Swyer syndrome), SRY mutations, residing in the HMG (High Mobility Group) domain, are found to affect nuclear transport or binding to and bending of DNA. Frasier syndrome (FS) is characterized by gonadal dysgenesis with a high risk for development of GB as well as chronic renal failure in early adulthood, and is known to arise from a splice site mutation in intron 9 of the Wilms' tumor 1 gene (WT1). Mutations in SRY as well as WT1 can lead to diminished expression and function of SRY, resulting in sub-optimal SOX9 expression, Sertoli cell formation and subsequent lack of proper testicular development. Embryonic germ cells residing in this unfavourable micro-environment have an increased risk for malignant transformation. Here a unique case of a phenotypically normal female (age 22 years) is reported, presenting with primary amenorrhoea, later diagnosed as hypergonadotropic hypogonadism on the basis of 46,XY gonadal dygenesis with a novel missense mutation in SRY. Functional in vitro studies showed no convincing protein malfunctioning. Laparoscopic examination revealed streak ovaries and a normal, but small, uterus. Pathological examination demonstrated bilateral GB and dysgerminoma, confirmed by immunohistochemistry. Occurrence of a delayed progressive kidney failure (focal segmental glomerular sclerosis) triggered analysis of WT1, revealing a pathogenic splice-site mutation in intron 9. Analysis of the SRY gene in an additional five FS cases did not reveal any mutations. The case presented shows the importance of multi-gene based diagnosis of DSD patients, allowing early diagnosis and treatment, thus preventing putative development of an invasive cancer.


Asunto(s)
Disgenesia Gonadal 46 XY/genética , Gonadoblastoma/genética , Mutación Missense/genética , Neoplasias Ováricas/genética , Sitios de Empalme de ARN/genética , Proteína de la Región Y Determinante del Sexo/genética , Proteínas WT1/genética , Secuencia de Aminoácidos , Secuencia de Bases , Análisis Mutacional de ADN , Femenino , Síndrome de Frasier/genética , Disgenesia Gonadal 46 XY/patología , Gonadoblastoma/patología , Humanos , Inmunohistoquímica , Datos de Secuencia Molecular , Proteínas WT1/química , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...