Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
BMC Oral Health ; 19(1): 60, 2019 04 18.
Article En | MEDLINE | ID: mdl-30999906

BACKGROUND: Oral microbiome has significant impact on both oral and general health. Polyols have been promoted as sugar substitutes in prevention of oral diseases. We aimed to reveal the effect of candies containing erythritol, xylitol or control (sorbitol) on salivary microbiome. METHODS: Ninety children (11.3 ± 0.6 years) consumed candies during 3 years. Microbial communities were profiled using Illumina HiSeq 2000 sequencing and real-time PCR. RESULTS: The dominant phyla in saliva were Firmicutes (39.1%), Proteobacteria (26.1%), Bacteroidetes (14.7%), Actinobacteria (12%) and Fusobacteria (6%). The microbiome of erythritol group significantly differed from that of the other groups. Both erythritol and xylitol reduced the number of observed bacterial phylotypes in comparison to the control group. The relative abundance of the genera Veillonella, Streptococcus and Fusobacterium were higher while that of Bergeyella lower after erythritol intervention when comparing with control. The lowest prevalence of caries-related mutans streptococci corresponded with the lowest clinical caries markers in the erythritol group. CONCLUSIONS: Daily consumption of erythritol, xylitol or control candies has a specific influence on the salivary microbiome composition in schoolchildren. Erythritol is associated with the lowest prevalence of caries-related mutans streptococci and the lowest levels of clinical caries experience. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT01062633.


Dental Caries/prevention & control , Microbiota/drug effects , Polymers/pharmacology , Saliva/microbiology , Xylitol/pharmacology , Adolescent , Child , Estonia , Humans , Streptococcus mutans
3.
Food Chem Toxicol ; 105: 448-455, 2017 Jul.
Article En | MEDLINE | ID: mdl-28478098

Polyols, also known as sugar alcohols, are widely used in the formulation of tooth-friendly and reduced-calorie foods. Considering the significant health benefits of polyols in products formulated for human use, there is increased interest in evaluating potential uses in companion animal applications. Erythritol and xylitol are two polyols which are currently widely used in products ranging from reduced-sugar foods to personal care and cosmetics. Published studies have shown that both of these compounds are well-tolerated in rodents. Their toxicity profiles differ when comparing canine safety data. Doses of xylitol as low as 0.15 g/kg-BW in dogs can result in life-threatening hypoglycemia and acute liver failure, whereas erythritol is well-tolerated in dogs with reported No Adverse Effect Levels upwards of 5 g/kg-BW/day in repeat-dose studies. While pivotal studies substantiating the safe use of erythritol in humans have been published, there are limited published studies to support the safe use of erythritol in dogs. Here we present the results of an acute oral and a sub-chronic oral toxicity study in Beagle dogs. Given the potential health benefits of oral products formulated with erythritol and the data presented herein substantiating the safe use in dogs, erythritol can be safely used in products for canines.


Erythritol/administration & dosage , Sweetening Agents/administration & dosage , Animals , Biological Assay , Dogs , Erythritol/toxicity , Sweetening Agents/toxicity , Xylitol/administration & dosage , Xylitol/toxicity
4.
Int J Dent ; 2016: 9868421, 2016.
Article En | MEDLINE | ID: mdl-27635141

Objective. To provide a comprehensive overview of published evidence on the impact of erythritol, a noncaloric polyol bulk sweetener, on oral health. Methods. A literature review was conducted regarding the potential effects of erythritol on dental plaque (biofilm), dental caries, and periodontal therapy. The efficacy of erythritol on oral health was compared with xylitol and sorbitol. Results. Erythritol effectively decreased weight of dental plaque and adherence of common streptococcal oral bacteria to tooth surfaces, inhibited growth and activity of associated bacteria like S. mutans, decreased expression of bacterial genes involved in sucrose metabolism, reduced the overall number of dental caries, and served as a suitable matrix for subgingival air-polishing to replace traditional root scaling. Conclusions. Important differences were reported in the effect of individual polyols on oral health. The current review provides evidence demonstrating better efficacy of erythritol compared to sorbitol and xylitol to maintain and improve oral health.

5.
Acta Diabetol ; 51(3): 513-6, 2014.
Article En | MEDLINE | ID: mdl-24366423

Sugar substitutes are important in the dietary management of diabetes mellitus. Erythritol is a non-caloric dietary bulk sweetener that reverses endothelial dysfunction in diabetic rats. We completed a pilot study to examine the effects of erythritol on vascular function in patients with type 2 diabetes mellitus. Participants (n = 24) consumed erythritol 36 g/day as an orange-flavored beverage for 4 weeks and a single dose of 24 g during the baseline and final visits. We assessed vascular function before and after acute (2 h) and chronic (4 weeks) erythritol consumption. Acute erythritol improved endothelial function measured by fingertip peripheral arterial tonometry (0.52 ± 0.48 to 0.87 ± 0.29 au, P = 0.005). Chronic erythritol decreased central pulse pressure (47 ± 13 to 41 ± 9 mmHg, P = 0.02) and tended to decrease carotid-femoral pulse wave velocity (P = 0.06). Thus, erythritol consumption acutely improved small vessel endothelial function, and chronic treatment reduced central aortic stiffness. Erythritol may be a preferred sugar substitute for patients with diabetes mellitus.


Diabetes Mellitus, Type 2/drug therapy , Endothelium, Vascular/physiopathology , Erythritol/administration & dosage , Sweetening Agents/administration & dosage , Blood Pressure , Diabetes Mellitus, Type 2/physiopathology , Endothelium, Vascular/drug effects , Female , Humans , Male , Middle Aged , Pilot Projects , Pulse Wave Analysis
6.
PLoS One ; 8(6): e65741, 2013.
Article En | MEDLINE | ID: mdl-23755276

Diabetes is characterized by hyperglycemia and development of vascular pathology. Endothelial cell dysfunction is a starting point for pathogenesis of vascular complications in diabetes. We previously showed the polyol erythritol to be a hydroxyl radical scavenger preventing endothelial cell dysfunction onset in diabetic rats. To unravel mechanisms, other than scavenging of radicals, by which erythritol mediates this protective effect, we evaluated effects of erythritol in endothelial cells exposed to normal (7 mM) and high glucose (30 mM) or diabetic stressors (e.g. SIN-1) using targeted and transcriptomic approaches. This study demonstrates that erythritol (i.e. under non-diabetic conditions) has minimal effects on endothelial cells. However, under hyperglycemic conditions erythritol protected endothelial cells against cell death induced by diabetic stressors (i.e. high glucose and peroxynitrite). Also a number of harmful effects caused by high glucose, e.g. increased nitric oxide release, are reversed. Additionally, total transcriptome analysis indicated that biological processes which are differentially regulated due to high glucose are corrected by erythritol. We conclude that erythritol protects endothelial cells during high glucose conditions via effects on multiple targets. Overall, these data indicate a therapeutically important endothelial protective effect of erythritol under hyperglycemic conditions.


Erythritol/pharmacology , Glucose/physiology , Human Umbilical Vein Endothelial Cells/drug effects , Sweetening Agents/pharmacology , 8-Hydroxy-2'-Deoxyguanosine , Cell Death/drug effects , Cell Survival/drug effects , Cells, Cultured , Cytoprotection , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/metabolism , Drug Evaluation, Preclinical , Eicosanoids/metabolism , Glucose/pharmacology , Human Umbilical Vein Endothelial Cells/physiology , Humans , Hyperglycemia/metabolism , Oxidative Stress , Transcriptome/drug effects
...