Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Asian J ; 19(9): e202400112, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38353579

RESUMEN

An original series of bipyrimidine-based chromophores featuring alkoxystyryl donor groups bearing short chiral (S)-2-methylbutyl chains in positions 4, 3,4 and 3,5, connected to electron-accepting 2,2-bipyrimidine rings, has been developed. Their linear and non-linear optical properties were studied using a variety of techniques, including one- and two-photon absorption spectroscopy, fluorescence measurements, as well as Hyper-Rayleigh scattering to determine the first hyperpolarizabilities. Their electronic and geometrical properties were rationalized by TD-DFT calculations. The thermal properties of the compounds were also investigated by a combination of polarized light optical microscopy, differential scanning calorimetry measurements and small-angle X-ray scattering experiments. The derivatives were found not to have mesomorphic properties, but to exhibit melting temperatures or cold crystallization behavior that enabled the isolation of well-organized thin films. The nonlinear optical properties of amorphous or crystalline thin films were studied by wide-field second harmonic generation and multiphoton fluorescence imaging, confirming that non-centrosymmetric crystal organization enables strong second and third harmonic generation. This new series confirms that our strategy of functionalizing 3D organic octupoles with short chiral chains to generate non-centrosymmetric organized thin films enables the development of highly second order nonlinear optical active materials without the use of corona-poling or tedious deposition techniques.

2.
Chem Commun (Camb) ; 60(13): 1731-1734, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38240142

RESUMEN

New phenyl and stilbene-bridged polyoxometalate (POM) charge-transfer chromophores with diphenylamino donor groups produce, respectively, the highest intrinsic and absolute quadratic hyperpolarisabilities measured for such species. The ß0,zzz obtained for the phenyl bridge - at 180 × 10-30 esu - is remarkable for a short conjugated system while changing to the stilbene (260 × 10-30 esu) produces a substantial increase in non-linearity for a minimal red-shift in the absorption profile. Together with TD-DFT calculations, the results show that maximising conjugation in the π-bridge is vital to high performance in such "POMophores".

3.
Chemistry ; 30(4): e202302930, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37926677

RESUMEN

New synthesized bipyrimidine-based chromophores presenting alkoxystyryl donor groups carrying aliphatic achiral and chiral chains in the 4 position, connected to electron-accepting 2,2-bipyrimidine cores have been synthesized. Their linear and nonlinear optical (NLO) properties were investigated as well as their mesomorphic properties by various techniques (light-transmission measurements, polarized-light optical microscopy, differential scanning calorimetry measurements and two-photon excited fluorescence). The derivatives with achiral linear carbon chains were found to exhibit liquid-crystal properties with the formation smectic phases over large temperature ranges, which were confirmed by small-angle X-ray scattering analysis via stacking models. The nonlinear optical properties in the solid state for derivatives with C14 and the citronellol chains have been studied by wide-field second-harmonic generation and multi-photon fluorescence imaging, confirming centrosymmetry for these achiral mesogens and their excellent third-order nonlinearity whereas the chiral compound exhibits non-centrosymmetric organization resulting in a strong Second Harmonic Generation at the crystal state.

4.
Dalton Trans ; 52(34): 12130-12142, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37584114

RESUMEN

The question of size economy in the design of chromophores for nonlinear optics is addressed in this investigation. We have synthesized directly linked donor-acceptor dyads, which lack a π-conjugated linker, the presence of which is usually considered obligatory in materials designed for nonlinear optics. Correlating linear optical data, electrochemical data, computational data and hyper Rayleigh scattering (HRS) data on ferrocene (Fc) based dyads, we demonstrate that the first hyperpolarizability of such size economical chromophores is significantly better compared to that of Fc based, traditional, larger, donor-π-acceptor chromophores. Arguably, a larger π-conjugated linker decreases the electronic communication between the donor and the acceptor and weakens the intramolecular charge transfer in such chromophores.

5.
Angew Chem Int Ed Engl ; 62(27): e202301754, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37095070

RESUMEN

Porphyrins are important macrocycles with applications in several areas including therapy, catalysis, and sensing. Strong nonlinear optical (NLO) responses are the key to fully exploiting the potential of these biocompatible molecules. We herein report that certain metal-alkynyl donor/nitro acceptor-functionalized porphyrins are attractive candidates for NLO applications. We show that specific examples exhibit record quadratic optical nonlinearity, exceptional two-photon absorption, and outstanding three-photon absorption, and we report the first porphyrins that exhibit four-photon absorption. The two-, three-, and four-photon absorption maxima are found at the corresponding multiples of linear absorption bands that time-dependent density functional theory assigns as admixtures of porphyrin-localized π*←π and donor-porphyrin to porphyrin-acceptor charge-transfer transitions.

6.
Nanoscale Adv ; 5(6): 1750-1759, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36926570

RESUMEN

Enhancement of the spontaneous emission of fluorophores aided by plasmonic nanoparticles (PNPs) prompts the growth of plasmonic organic light emitting diodes (OLEDs). Together with the spatial dependence of the fluorophore and PNPs on enhanced fluorescence, the surface coverage of the PNPs controls the charge transport in OLEDs. Hence, here, the spatial and surface coverage reliance of plasmonic gold nanoparticles is controlled by a roll-to-roll compatible ultrasonic spray coating technique. A 2-fold enhancement in the multi photon fluorescence is seen by two-photon fluorescence microscopy for a polystyrene sulfonate (PSS) stabilized gold nanoparticle located 10 nm away from the super yellow fluorophore. Fluorescence enhancement combined with ∼2% surface coverage of PNPs, provides a 33%, 20% and ∼40% increase in the electroluminescence, luminous efficacy and external quantum efficiency, respectively.

7.
Angew Chem Int Ed Engl ; 62(5): e202215537, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36448963

RESUMEN

Electrochemically switched 2nd order non-linear optical responses have been demonstrated for the first time in polyoxometalates (POMs), with an arylimido-derivative showing a leading combination of high on/off contrast (94 %), high visible transparency, and cyclability. Spectro-electrochemical and TD-DFT studies indicate that the switch-off results from weakened charge transfer (CT) character of the electronic transitions in the reduced state. This represents the first study of an imido-POM reduced state, and demonstrates the potential of POM hybrids as electrochemically activated molecular switches.

8.
Acta Biomater ; 150: 128-137, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35842033

RESUMEN

Disease research and drug screening platforms require in vitro model systems with cellular cues resembling those of natural tissues. Fibrillar alignment, occurring naturally in extracellular matrices, is one of the crucial attributes in tissue development. Obtaining fiber alignment in 3D, in vitro remains an important challenge due to non-linear material characteristics. Here, we report a cell-compatible, shear stress-based method allowing to obtain 3D homogeneously aligned fibrillar collagen hydrogels. Controlling the shear-stress during gelation results in low strain rates, with negligible effects on the viability of embedded SH-SY5Y cells. Our approach offers reproducibility and tunability through a paradigm shift: The shear-stress initiation moment, being the critical optimization parameter in the process, is related to the modulus of the developing gel, whereas state of the art methods often rely on a predefined time to initiate the alignment procedure. After curing, the induced 3D alignment is maintained after the release of stress, with a linear relation between the total acquired strain and the fiber alignment. This method is generally applicable to 3D fibrillar materials and stress/pressure-controlled setups, making it a valuable addition to the fast-growing field of tissue engineering. STATEMENT OF SIGNIFICANCE: Controlling fiber alignment in vitro 3D hydrogels is crucial for developing physiologically relevant model systems. However, it remains challenging due to the non-linear material characteristics of fibrillar hydrogels, limiting the scalability and repeatability. Our approach tackles these challenges by utilizing a stress-controlled rheometer allowing us to monitor structural changes in situ and determine the optimal moment for applying a shear-stress inducing alignment. By careful parameter control, we infer the relationship between time, induced strain, alignment and biocompatibility. This tunable and reproducible method is both scalable and generally applicable to any fibrillar hydrogel, therefore, we believe it is useful for research investigating the link between matrix anisotropy and cell behavior in 3D systems, organ-on-chip technologies and drug research.


Asunto(s)
Hidrogeles , Neuroblastoma , Colágeno Tipo I/química , Humanos , Hidrogeles/química , Reproducibilidad de los Resultados , Ingeniería de Tejidos/métodos
9.
Small ; 18(18): e2200205, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35355419

RESUMEN

Optical interrogation of cellular electrical activity has proven itself essential for understanding cellular function and communication in complex networks. Voltage-sensitive dyes are important tools for assessing excitability but these highly lipophilic sensors may affect cellular function. Label-free techniques offer a major advantage as they eliminate the need for these external probes. In this work, it is shown that endogenous second-harmonic generation (SHG) from live cells is highly sensitive to changes in transmembrane potential (TMP). Simultaneous electrophysiological control of a living human embryonic kidney (HEK293T) cell, through a whole-cell voltage-clamp reveals a linear relation between the SHG intensity and membrane voltage. The results suggest that due to the high ionic strengths and fast optical response of biofluids, membrane hydration is not the main contributor to the observed field sensitivity. A conceptual framework is further provided that indicates that the SHG voltage sensitivity reflects the electric field within the biological asymmetric lipid bilayer owing to a nonzero χeff(2) tensor. Changing the TMP without surface modifications such as electrolyte screening offers high optical sensitivity to membrane voltage (≈40% per 100 mV), indicating the power of SHG for label-free read-out. These results hold promise for the design of a non-invasive label-free read-out tool for electrogenic cells.


Asunto(s)
Microscopía de Generación del Segundo Armónico , Colorantes , Células HEK293 , Humanos , Potenciales de la Membrana
10.
Mater Horiz ; 9(1): 261-270, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34590657

RESUMEN

This study demonstrates enhancement of in-device electro-optic activity via a series of theory-inspired organic electro-optic (OEO) chromophores based on strong (diarylamino)phenyl electron donating moieties. These chromophores are tuned to minimize trade-offs between molecular hyperpolarizability and optical loss. Hyper-Rayleigh scattering (HRS) measurements demonstrate that these chromophores, herein described as BAH, show >2-fold improvement in ß versus standard chromophores such as JRD1, and approach that of the recent BTP and BAY chromophore families. Electric field poled bulk devices of neat and binary BAH chromophores exhibited significantly enhanced EO coefficients (r33) and poling efficiencies (r33/Ep) compared with state-of-the-art chromophores such as JRD1. The neat BAH13 devices with charge blocking layers produced very large poling efficiencies of 11.6 ± 0.7 nm2 V-2 and maximum r33 value of 1100 ± 100 pm V-1 at 1310 nm on hafnium dioxide (HfO2). These results were comparable to that of our recently reported BAY1 but with much lower loss (extinction coefficient, k), and greatly exceeding that of other previously reported OEO compounds. 3 : 1 BAH-FD : BAH13 blends showed a poling efficiency of 6.7 ± 0.3 nm2 V-2 and an even greater reduction in k. 1 : 1 BAH-BB : BAH13 showed a higher poling efficiency of 8.4 ± 0.3 nm2 V-2, which is approximately a 2.5-fold enhancement in poling efficiency vs. JRD1. Neat BAH13 was evaluated in plasmonic-organic hybrid (POH) Mach-Zehnder modulators with a phase shifter length of 10 µm and slot widths of 80 and 105 nm. In-device BAH13 achieved a maximum r33 of 208 pm V-1 at 1550 nm, which is ∼1.7 times higher than JRD1 under equivalent conditions.

11.
Biosens Bioelectron ; 194: 113577, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34481238

RESUMEN

To overcome the problems of refractive index matching and increased disorder when working with traditional heterostructure colloidal photonic crystals (CPCs) with dual or multiple photonic bandgaps (PBGs) for fluorescence enhancement in water, we propose the use of a chemical heterostructure in hollow sphere CPCs (HSCPCs). A partial chemical modification of the HSCPC creates a large contrast in wettability to induce the heterostructure, while the hollow spheres increase the refractive index difference when used in aqueous environment. With the platform, fluorescence enhancement reaches around 160 times in solution, and 72 times (signal-to-background ratio ~7 times) in cells during proof-of-concept live cardiomyocyte contractility experiments. Such photonic platform can be further exploited for chemical sensing, bioassays, and environmental monitoring. Moreover, the introduction of chemical heterostructures provides new design principles for functionalized photonic devices.


Asunto(s)
Técnicas Biosensibles , Fotones , Refractometría , Agua
12.
Adv Mater ; 33(45): e2104174, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34545643

RESUMEN

High performance organic electro-optic (OEO) materials enable ultrahigh bandwidth, small footprint, and extremely low drive voltage in silicon-organic hybrid and plasmonic-organic hybrid photonic devices. However, practical OEO materials under device-relevant conditions are generally limited to performance of ≈300 pm V-1 (10× the EO response of lithium niobate). By means of theory-guided design, a new series of OEO chromophores is demonstrated, based on strong bis(4-dialkylaminophenyl)phenylamino electron donating groups, capable of EO coefficients (r33 ) in excess of 1000 pm V-1 . Density functional theory modeling and hyper-Rayleigh scattering measurements are performed and confirm the large improvement in hyperpolarizability due to the stronger donor. The EO performance of the exemplar chromophore in the series, BAY1, is evaluated neat and at various concentrations in polymer host and shows a nearly linear increase in r33 and poling efficiency (r33 /Ep , Ep is poling field) with increasing chromophore concentration. 25 wt% BAY1/polymer composite shows a higher poling efficiency (3.9 ± 0.1 nm2 V-2 ) than state-of-the-art neat chromophores. Using a high-ε charge blocking layer with BAY1, a record-high r33 (1100 ± 100 pm V-1 ) and poling efficiency (17.8 ± 0.8 nm2 V-2 ) at 1310 nm are achieved. This is the first reported OEO material with electro-optic response larger than thin-film barium titanate.

13.
Chemphyschem ; 20(13): 1765-1774, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31020783

RESUMEN

Gold nanoparticles (AuNPs) are regarded as promising building blocks in functional nanomaterials for sensing, drug delivery and catalysis. One remarkable property of these particles is the localized surface plasmon resonance (LSPR), which gives rise to augmented optical properties through local field enhancement. LSPR also influences the nonlinear optical properties of metal NPs (MNPs) making them potentially interesting candidates for fast, high resolution nonlinear optical imaging. In this work we characterize and discuss the wavelength dependence of the hyper-Rayleigh scattering (HRS) behavior of spherical gold nanoparticles (GNP) and gold nanorods (GNR) in solution, from 850 nm up to 1300 nm, covering the near-infrared (NIR) window relevant for deep tissue imaging. The high-resolution spectral data allows discriminating between HRS and two photon photoluminescence contributions. Upon particle aggregation, we measured very large enhancements (ca. 104 ) of the HRS intensity in the NIR, which is explained by considering aggregation-induced plasmon coupling effects and local field enhancement. These results indicate that purposely designed coupled nanostructures could prove advantageous for nonlinear optical imaging and biosensing applications.

14.
Org Biomol Chem ; 15(4): 947-956, 2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-28054076

RESUMEN

Pyropheophorbide-a methyl ester (PPa-OMe) has been modified by attaching electron-donor and -acceptor groups to alter its linear and nonlinear optical properties. Regioselective bromination of the terminal vinyl position and Suzuki coupling were used to attach a 4-(N,N-diethylaminophenyl) electron-donor group. The electron-acceptor dicyanomethylene was attached at the cyclic ketone position through a Knoevenagel condensation. Four different derivatives of PPa-OMe, containing either electron-donor or electron-acceptor groups, or both, were converted to hydrophilic bis-TEG amides to generate a series of amphiphilic dyes. The absorption and emission properties of all the dyes were compared to a previously reported push-pull type porphyrin-based dye and a commercial push-pull styryl dye, FM4-64. Electrochemical measurements reveal that the electron donor group causes a greater decrease in HOMO-LUMO gap than the electron-acceptor. TD-DFT calculations on optimized geometries (DFT) of all four dyes show that the HOMO is mostly localized on the donor, 4-(N,N-diethylaminophenyl), while the LUMO is distributed around the chlorin ring and the electron-acceptor. Hyper-Rayleigh scattering experiments show that the first-order hyperpolarizabilities of the dyes increase on attaching either electron-donor or -acceptor groups, having the highest value when both the donor and acceptor groups are attached. Two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) images of the bis-TEG amide attached dyes in lipid monolayer-coated droplets of water-in-oil reveal that the TPEF and SHG involve transition dipole moments in different orientations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...