Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2831: 351-375, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39134862

RESUMEN

Fluorescent and non-fluorescent neural tract tracers enable the investigation of neural pathways in both peripheral and central nervous systems in laboratory animals demonstrating images with high resolution and great anatomic precision. Anterograde and retrograde viral tracers are important cutting-edge tools for neuroanatomical mapping. The optogenetic consists of an advanced alternative for in vivo neural tract tracing procedures, fundamentally considering the possibility to dissect and modulate pathways either exciting or inhibiting neural circuits in laboratory animals. The neurotractography by diffusion tensor imaging in vivo procedures enables the study of neural pathways in humans with reasonable accuracy. Here we describe the procedure of classical anatomic neural tract tracing and modern optogenetic technique performed in anima vili in addition to different diffusion tensor neurotractography performed in anima nobili.


Asunto(s)
Imagen de Difusión Tensora , Optogenética , Optogenética/métodos , Animales , Imagen de Difusión Tensora/métodos , Técnicas de Trazados de Vías Neuroanatómicas/métodos , Vías Nerviosas , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Encéfalo/metabolismo , Trazadores del Tracto Neuronal , Humanos , Ratones
2.
Neurosci Lett ; 820: 137572, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38072029

RESUMEN

BACKGROUND: Haloperidol (HAL) is an antipsychotic used in the treatment of schizophrenia. However, adverse effects are observed in the extrapyramidal tracts due to its systemic action. Natural compounds are among the treatment alternatives widely available in Brazilian biodiversity. Mygalin (MY), a polyamine that was synthesized from a natural molecule present in the hemolymph of the Acanthoscurria gomesian spider, may present an interesting approach. AIMS: This study aimed to evaluate the effect of MY in mice subjected to HAL-induced catalepsy. METHODS: Male Swiss mice were used. Catalepsy was induced by intraperitoneal administration of HAL (0.5 mg/kg - 1 mL/Kg) diluted in physiological saline. To assess the MY effects on catalepsy, mice were assigned to 4 groups: (1) physiological saline (NaCl 0.9 %); (2) MY at 0.002 mg/Kg; (3) MY at 0.02 mg/Kg; (4) MY at 0.2 mg/Kg. MY or saline was administered intraperitoneally (IP) 10 min b HAL before saline. Catalepsy was evaluated using the bar test at 15, 30, 60, 90, and 120 min after the IP administration of HAL. RESULTS: The latency time in the bar test 15, 30, 60, and 90 min increased (p < 0.05) after IP administration of HAL compared to the control group. Catalepsy was attenuated 15, 30, 90, and 120 min (p < 0.05) after the IP-administration of MY at 0.2 mg/Kg; while MY at 0.02 mg/Kg attenuated catalepsy 15 min after the HAL treatment. Our findings showed that MY attenuates the HAL-induced cataleptic state in mice.


Asunto(s)
Antipsicóticos , Arañas , Ratones , Masculino , Animales , Haloperidol/farmacología , Catalepsia/inducido químicamente , Catalepsia/tratamiento farmacológico , Antipsicóticos/efectos adversos
3.
Exp Brain Res ; 241(11-12): 2591-2604, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37725136

RESUMEN

Neuropathic pain (NP) represents a complex disorder with sensory, cognitive, and emotional symptoms. The medial prefrontal cortex (mPFC) takes critical regulatory roles and may change functionally and morphologically during chronic NP. There needs to be a complete understanding of the neurophysiological and psychopharmacological bases of the NP phenomenon. This study aimed to investigate the participation of the infralimbic division (IFL) of the mPFC in chronic NP, as well as the role of the N-methyl-D-aspartic acid receptor (NMDAr) in the elaboration of chronic NP. Male Wistar rats were submitted to the von Frey and acetone tests to assess mechanical and cold allodynia after 21 days of chronic constriction injury (CCI) of the sciatic nerve or Sham-procedure ("false operated"). Electrical neurostimulation of the IFL/mPFC was performed by low-frequency stimuli (20 µA, 100 Hz) applied for 15 s by deep brain stimulation (DBS) device 21 days after CCI. Either cobalt chloride (CoCl2 at 1.0 mM/200 nL), NMDAr agonist (at 0.25, 1.0, and 2.0 nmol/200 nL) or physiological saline (200 nL) was administered into the IFL/mPFC. CoCl2 administration in the IFL cortex did not alter either mechanical or cold allodynia. DBS stimulation of the IFL cortex decreased mechanical allodynia in CCI rats. Chemical stimulation of the IFL cortex by an NMDA agonist (at 2.0 nmol) decreased mechanical allodynia. NMDA at any dose (0.25, 1.0, and 2.0 nmol) reduced the flicking/licking duration in the cold test. These findings suggest that the IFL/mPFC and the NMDAr of the neocortex are involved in attenuating chronic NP in rats.


Asunto(s)
Hiperalgesia , Neuralgia , Ratas , Masculino , Animales , N-Metilaspartato/farmacología , Dimensión del Dolor , Ratas Wistar , Neuralgia/terapia , Receptores de N-Metil-D-Aspartato/metabolismo , Corteza Prefrontal/metabolismo
4.
J Biochem Mol Toxicol ; 37(7): e23353, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37069807

RESUMEN

Depression has a high rate of comorbidity with neuropathic pain. This study aims to investigate the effect of Mygalin, an acylpolyamine synthesized from a natural molecule in the hemolymph of the Acanthoscurria gomesiana spider, injected into the prelimbic (PrL) region of the medial prefrontal cortex on chronic neuropathic pain and depression comorbidity in rats. To investigate that comorbidity, neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve in male Wistar rats. The biotinylated biodextran amine (BDA) bidirectional neural tract tracer was microinjected into the PrL cortex to study brain connections. Rodents were further subjected to von Frey (mechanical allodynia), acetone (cold allodynia), and forced swim (depressive-like behavior) tests. BDA neural tract tracer-labeled perikarya were found in the dorsal columns of the periaqueductal gray matter (dPAG) and the dorsal raphe nucleus (DRN). Neuronal activity of DRN neurons decreased in CCI rats. However, PrL cortex treatment with Mygalin increased the number of spikes on DRN neurons. Mygalin treatment in the PrL cortex decreased both mechanical and cold allodynia and immobility behavior in CCI rats. PrL cortex treatment with N-methyl-D-aspartate (NMDA) receptor receptors attenuated the analgesic and antidepressive effects caused by Mygalin. The PrL cortex is connected with the dPAG and DRN, and Mygalin administration into the PrL increased the activity of DRN neurons. Mygalin in the PrL cortex produced antinociceptive and antidepressive-like effects, and the NMDA agonist reversed these effects.


Asunto(s)
Neuralgia , Arañas , Ratas , Masculino , Animales , Depresión , Hiperalgesia , N-Metilaspartato/farmacología , Ratas Wistar , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Receptores de N-Metil-D-Aspartato , Comorbilidad , Corteza Prefrontal
5.
Pain Med ; 22(2): 338-351, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-32875331

RESUMEN

BACKGROUND: Chronic constriction injury (CCI) is a model of neuropathic pain induced by four loose ligatures around the sciatic nerve. This work aimed to investigate the sensory, affective, cognitive, and motor changes induced by an adaptation of the CCI model by applying a single ligature around the sciatic nerve. METHODS: Mechanical allodynia was measured from day 1 to day 28 postsurgery by the von Frey test. The beam walking test (BWT) was conducted weekly until 28 days after surgery. Anxiety- and depression-like behaviors, and cognitive performance were assessed through the open field (OF), forced swimming (FS), and novel object recognition (NOR) tests, respectively, 21 days after surgery. RESULTS: The two CCI models, both Bennett and Xie's model (four ligatures of the sciatic nerve) and a modification of it (one ligature), induced mechanical allodynia, increased immobility in the FS, and reduced recognition index in the NOR. The exploratory behavior and time spent in the central part of the arena decreased, while the defensive behavior increased in the OF. The animals subjected to the two CCI models showed motor alterations in the BWT; however, autotomy was observed only in the group with four ligatures and not in the group with a single ligature. CONCLUSIONS: Overall these results demonstrate that our adapted CCI model, using a single ligature around the sciatic nerve, induces sensory, affective, cognitive, and motor alterations comparable to the CCI model with four ligatures without generating autotomy. This adaptation to the CCI model may therefore represent an appropriate and more easily performed model for inducing neuropathic pain and study underlying mechanisms and effective treatments.


Asunto(s)
Disfunción Cognitiva , Mononeuropatías , Neuralgia , Animales , Constricción , Modelos Animales de Enfermedad , Hiperalgesia/epidemiología , Neuralgia/epidemiología , Neuralgia/etiología , Ratas , Nervio Ciático
6.
Neurochem Res ; 44(9): 2068-2080, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31317507

RESUMEN

The mechanisms underlying chronic and neuropathic pain pathology involve peripheral and central sensitisation. The medial prefrontal cortex (mPFC) seems to participate in pain chronification, and glutamatergic neurotransmission may be involved in this process. Thus, the aim of the present work was to investigate the participation of the prelimbic (PrL) area of the mPFC in neuropathic pain as well as the role of N-methyl D-aspartate (NMDA) glutamate receptors in neuropathic pain induced by a modified sciatic nerve chronic constriction injury (CCI) protocol in Wistar rats. Neural inputs to the PrL cortex were inactivated by intracortical treatment with the synapse blocker cobalt chloride (CoCl2, 1.0 mM/200 nL) 7, 14, 21, or 28 days after the CCI or sham procedure. The glutamatergic agonist NMDA (0.25, 1 or 4 nmol) or the selective NMDA receptor antagonist LY235959 (2, 4 or 8 nmol) was microinjected into the PrL cortex 21 days after surgery. CoCl2 administration in the PrL cortex decreased allodynia 21 and 28 days after CCI. NMDA at 1 and 4 nmol increased allodynia, whereas LY235959 decreased mechanical allodynia at the highest dose (8 nmol) microinjected into the PrL cortex. These findings suggest that NMDA receptors in the PrL cortex participate in enhancing the late phase of mechanical allodynia after NMDA-induced increases and LY235959-induced decreases in allodynia 21 days after CCI. The glutamatergic system potentiates chronic neuropathic pain by NMDA receptor activation in the PrL cortex. Mechanism of neuropathic pain. The infusion of CoCl2, a synapse activity blocker, into the prelimbic (PrL) division of the medial prefrontal cortex (mPFC) decreased the severity of mechanical allodynia, showing the late participation of the limbic cortex. The glutamatergic system potentiates chronic neuropathic pain via NMDA receptor activation in the PrL cortex.


Asunto(s)
Neuralgia/metabolismo , Nervios Periféricos/metabolismo , Corteza Prefrontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Cobalto/farmacología , Hiperalgesia/tratamiento farmacológico , Isoquinolinas/farmacología , Masculino , N-Metilaspartato/farmacología , Neuralgia/tratamiento farmacológico , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Corteza Prefrontal/efectos de los fármacos , Ratas Wistar , Transmisión Sináptica/efectos de los fármacos
7.
J Psychopharmacol ; 33(1): 51-61, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30407114

RESUMEN

BACKGROUND: There is a controversy regarding the key role played by opioid peptide neurotransmission in the modulation of panic-attack-related responses. AIMS: Using a prey versus rattlesnakes paradigm, the present work investigated the involvement of the endogenous opioid peptide-mediated system of the inferior colliculus in the modulation of panic attack-related responses. METHODS: Wistar rats were pretreated with intracollicular administration of either physiological saline or naloxone at different concentrations and confronted with rattlesnakes ( Crotalus durissus terrificus). The prey versus rattlesnake confrontations were performed in a polygonal arena for snakes. The defensive behaviors displayed by prey (defensive attention, defensive immobility, escape response, flat back approach and startle) were recorded twice: firstly, over a period of 15 min the presence of the predator and a re-exposure was performed 24 h after the confrontation, when animals were exposed to the experimental enclosure without the rattlesnake. RESULTS: The intramesencephalic non-specific blockade of opioid receptors with microinjections of naloxone at higher doses decreased both anxiety- (defensive attention and flat back approach) and panic attack-like (defensive immobility and escape) behaviors, evoked in the presence of rattlesnakes and increased non-defensive responses. During the exposure to the experimental context, there was a decrease in duration of defensive attention. CONCLUSIONS: These findings suggest a panicolytic-like effect of endogenous opioid receptors antagonism in the inferior colliculus on innate (panic attack) and conditioned (anticipatory anxiety) fear in rats threatened by rattlesnakes.


Asunto(s)
Miedo/efectos de los fármacos , Colículos Inferiores/efectos de los fármacos , Naloxona/farmacología , Péptidos Opioides/fisiología , Trastorno de Pánico/tratamiento farmacológico , Animales , Reacción de Prevención/efectos de los fármacos , Crotalus , Mecanismos de Defensa , Reacción de Fuga/efectos de los fármacos , Miedo/psicología , Colículos Inferiores/fisiología , Masculino , Péptidos Opioides/antagonistas & inhibidores , Ratas , Ratas Wistar
8.
Psychopharmacology (Berl) ; 234(20): 3009-3025, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28856406

RESUMEN

RATIONALE: Gamma-aminobutyric acid (GABA)ergic neurons of the substantia nigra pars reticulata (SNpr) are connected to the deep layers of the superior colliculus (dlSC). The dlSC, in turn, connect with the SNpr through opioid projections. Nociceptin/orphanin FQ peptide (N/OFQ) is a natural ligand of a Gi protein-coupled nociceptin receptor (ORL1; NOP) that is also found in the SNpr. Our hypothesis is that tectonigral opioid pathways and intranigral orphanin-mediated mechanisms modulate GABAergic nigrotectal connections. OBJECTIVES: Therefore, the aim of this work was to study the role of opioid and NOP receptors in the SNpr during the modulation of defence reactions organised by the dlSC. METHODS: The SNpr was pretreated with either opioid or NOP receptor agonists and antagonists, followed by dlSC treatment with bicuculline. RESULTS: Blockade of GABAA receptors in the dlSC elicited fear-related defensive behaviour. Pretreatment of the SNpr with naloxone benzoylhydrazone (NalBzoH), a µ-, δ-, and κ1-opioid receptor antagonist as well as a NOP receptor antagonist, decreased the aversive effect of bicuculline treatment on the dlSC. Either µ-opioid receptor activation or blockade by SNpr microinjection of endomorphin-1 (EM-1) and CTOP promoted pro-aversive and anti-aversive actions, respectively, that modulated the defensive responses elicited by bicuculline injection into the dlSC. Pretreatment of the SNpr with the selective NOP receptor antagonist JTC801 decreased the aversive effect of bicuculline, and microinjections of the selective NOP receptor agonist NNC 63-0532 promoted the opposite effect. CONCLUSIONS: These results demonstrate that opioid pathways and orphanin-mediated mechanisms have a critical role in modulating the activity of nigrotectal GABAergic pathways during the organisation of defensive behaviours.


Asunto(s)
Aminoquinolinas/administración & dosificación , Benzamidas/administración & dosificación , Miedo/efectos de los fármacos , Oligopéptidos/administración & dosificación , Porción Reticular de la Sustancia Negra/efectos de los fármacos , Receptores Opioides , Somatostatina/análogos & derivados , Analgésicos Opioides/administración & dosificación , Animales , Bicuculina/administración & dosificación , Relación Dosis-Respuesta a Droga , Miedo/fisiología , Masculino , Naloxona/administración & dosificación , Naloxona/análogos & derivados , Péptidos Opioides/administración & dosificación , Porción Reticular de la Sustancia Negra/fisiología , Ratas , Ratas Wistar , Receptores Opioides/fisiología , Somatostatina/administración & dosificación , Colículos Superiores/efectos de los fármacos , Colículos Superiores/fisiología , Ácido gamma-Aminobutírico/administración & dosificación , Receptor de Nociceptina , Nociceptina
9.
Synapse ; 70(12): 519-530, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27503688

RESUMEN

Generalised tonic and tonic-clonic seizures are followed by significant increase in nociceptive thresholds in both laboratory animals and humans. The endogenous opioid peptides play a role in antinociceptive signalling, and the periaqueductal grey matter (PAG) is recruited to induce analgesia. Thus, the aim of this investigation was to evaluate the role of µ1 -opioid receptors in the dorsomedial (dm) and ventrolateral (vl) columns of PAG in post-ictal antinociception. Pentylenetetrazole (PTZ; 64 mg/kg), which is an ionotropic GABA-mediated Cl- influx antagonist, was intraperitoneally (IP) administered to induce tonic-clonic seizures in Wistar rats. The tail-flick test was used to measure the nociceptive threshold. Microinjections of naltrexone (5.0 µg/0.2 µL), which is a non-selective opioid receptor antagonist, in both dmPAG and vlPAG decreased the tonic-clonic seizure-induced antinociception in seizing animals from 10 to 120 min after seizures. Furthermore, microinjections of the µ1 -opioid receptor-selective antagonist naloxonazine (5.0 µg/0.2 µL) into the dmPAG decreased post-ictal antinociception immediately after convulsive reactions and from 10 to 90 min after seizures. However, vlPAG-pretreatment with naloxonazine at the same concentration decreased the post-ictal antinociception 30 min after the onset of tonic-clonic seizures and the nociceptive threshold returned to basal values 120 min after seizures. These findings indicate that µ1 -opioid receptor-signalling mechanisms in both dmPAG and vlPAG play a relevant role in the organisation of post-ictal antinociception. In addition, µ1 -opioid receptors in the dmPAG rather than in vlPAG seem to be more critically recruited during the antinociception induced by generalised tonic-clonic seizures.


Asunto(s)
Nocicepción , Sustancia Gris Periacueductal/metabolismo , Receptores Opioides mu/metabolismo , Animales , Masculino , Naloxona/análogos & derivados , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Umbral del Dolor , Pentilenotetrazol/toxicidad , Sustancia Gris Periacueductal/fisiología , Ratas , Ratas Wistar , Receptores Opioides mu/antagonistas & inhibidores , Convulsiones/etiología , Convulsiones/fisiopatología
10.
Synapse ; 68(1): 16-30, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23913301

RESUMEN

The periaqueductal gray matter (PAG) consists in a brainstem structure rich in 5-hydroxytryptamine (5-HT) inputs related to the modulation of pain. The involvement of each of the serotonergic receptor subtypes found in PAG columns, such as the dorsomedial (dmPAG) and the ventrolateral (vlPAG) columns, regarding post-ictal antinociception have not been elucidated. The present work investigated the participation of the dmPAG and vlPAG columns in seizure-induced antinociception. Specifically, we studied the involvement of serotonergic neurotransmission in these columns on antinociceptive responses that follow tonic-clonic epileptic reactions induced by pentylenetetrazole (PTZ), an ionophore GABA-mediated Cl(-) influx antagonist. Microinjections of cobalt chloride (1.0 mM CoCl2 /0.2 µL) into the dmPAG and vlPAG caused an intermittent local synaptic inhibition and decreased post-ictal antinociception that had been recorded at various time points after seizures. Pretreatments of the dmPAG or the vlPAG columns with the nonselective serotonergic receptors antagonist methysergide (5.0 µg/0.2 µL) or intramesencephalic microinjections of ketanserin (5.0 µg/0.2 µL), a serotonergic antagonist with more affinity to 5-HT2A/2C receptors, decreased tonic-clonic seizure-induced antinociception. Both dmPAG and vlPAG treatment with either the 5-HT2A receptor selective antagonist R-96544 (10 nM/0.2 µL), or the 5-HT2C receptors selective antagonist RS-102221 (0.15 µg/0.2 µL) also decrease post-ictal antinociception. These findings suggest that serotonergic neurotransmission, which recruits both 5-HT2A and 5-HT2C serotonergic receptors in dmPAG and vlPAG columns, plays a critical role in the elaboration of post-ictal antinociception.


Asunto(s)
Nocicepción , Sustancia Gris Periacueductal/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Receptor de Serotonina 5-HT2C/metabolismo , Animales , Masculino , Especificidad de Órganos , Sustancia Gris Periacueductal/fisiología , Ratas , Ratas Wistar , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Convulsiones/fisiopatología , Neuronas Serotoninérgicas/metabolismo , Neuronas Serotoninérgicas/fisiología , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Transmisión Sináptica
11.
Brain Behav ; 3(3): 286-301, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23785660

RESUMEN

Several studies have suggested the involvement of the hippocampus in the elaboration of epilepsy. There is evidence that suggests the hippocampus plays an important role in the affective and motivational components of nociceptive perception. However, the exact nature of this involvement remains unclear. Therefore, the aim of this study was to determine the role of muscarinic and nicotinic cholinergic receptors in the dorsal hippocampus (dH) in the organization of postictal analgesia. In a neuroanatomical study, afferent connections were found from the somatosensory cortex, the medial septal area, the lateral septal area, the diagonal band of Broca, and the dentate gyrus to the dH; all these areas have been suggested to modulate convulsive activity. Outputs to the dH were also identified from the linear raphe nucleus, the median raphe nucleus (MdRN), the dorsal raphe nucleus, and the locus coeruleus. All these structures comprise the endogenous pain modulatory system and may be involved either in postictal pronociception or antinociception that is commonly reported by epileptic patients. dH-pretreatment with cobalt chloride (1.0 mmol/L CoCl2/0.2 µL) to transiently inhibit local synapses decreased postictal analgesia 10 min after the end of seizures. Pretreatment of the dH with either atropine or mecamylamine (1.0 µg/0.2 µL) attenuated the postictal antinociception 30 min after seizures, while the higher dose (5.0 µg/0.2 µL) decreased postictal analgesia immediately after the end of seizures. These findings suggest that the dH exerts a critical role in the organization of postictal analgesia and that muscarinic and nicotinic cholinergic receptor-mediated mechanisms in the dH are involved in the elaboration of antinociceptive processes induced by generalized tonic-clonic seizures.

12.
Eur J Pharmacol ; 698(1-3): 235-45, 2013 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-23397604

RESUMEN

The chemical neuroanatomy and the effects of central administration of opioid antagonists on the innate fear-induced responses elicited by electrical (at escape behaviour threshold) stimulation of the midbrain tectum were determined. The aim of the present work was to investigate the interaction between the tecto-nigral endogenous opioid peptide-mediated disinhibitory pathways and nigro-tectal inhibitory links in the control of panic-like behaviour and their organisation in the continuum comprised by the deep layers of the superior colliculus (dlSC) and the dorsolateral columns of the periaqueductal grey matter (dlPAG). Beta-endorphin-labelled neurons and fibres were found in the dorsal midbrain and also in the substantia nigra. Opioid varicose fibres and terminal buttons were widely distributed in PAG columns and in all substantia nigra subdivisions. Microinjections of naltrexone (a non-selective opioid receptor antagonist; 5.0 µg/0.2 µl) or nor-binaltorphimine (a selective κ-opioid receptor antagonist; 5.0 µg/0.2 µl) in the dlSC/dlPAG continuum, in independent groups of animals, induced significant increases in the escape thresholds for midbrain tectum electrical stimulation. The microinjection of naltrexone or nor-binaltorphimine into the SNpr also increased the escape behaviour threshold for electrical stimulation of dlSC/dlPAG. These morphological and neuropharmacological findings support previous evidence from our team for the role played by the interaction between opioidergic and GABAergic mechanisms in the modulation of innate fear-induced responses. The present data offer a neuroanatomical basis for both intratectal axo-axonic/pre-synaptic and tecto-nigral axo-somatic opioid inhibition of GABAergic nigro-tectal neurons that modulate the dorsal midbrain neurons related to the organisation of fear-related emotional responses.


Asunto(s)
Mesencéfalo/efectos de los fármacos , Mesencéfalo/metabolismo , Neuroanatomía , Péptidos Opioides/metabolismo , Pánico/efectos de los fármacos , Receptores Opioides kappa/metabolismo , Transmisión Sináptica/efectos de los fármacos , Animales , Estimulación Eléctrica , Instinto , Masculino , Mesencéfalo/citología , Mesencéfalo/fisiología , Naltrexona/análogos & derivados , Naltrexona/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Psicofarmacología , Ratas , Ratas Wistar , Receptores Opioides kappa/antagonistas & inhibidores , Sustancia Negra/citología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancia Negra/fisiología , Ácido gamma-Aminobutírico/metabolismo
13.
Neuropharmacology ; 67: 379-94, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23201351

RESUMEN

Decrease of γ-aminobutyric acid (GABA)-mediated neurotransmission in the dorsomedial hypothalamus (DMH) evokes instinctive fear-like responses. The aim of the present study was to investigate the involvement of the serotonin (5-HT)- and norepinephrine-mediated pathways of the endogenous pain inhibitory system, including the dorsal raphe nucleus (DRN) and the locus coeruleus (LC), in the defensive responses and antinociceptive processes triggered by the blockade of GABAergic receptors in the DMH. The intra-hypothalamic microinjection of the GABA(A) receptor antagonist bicuculline (40 ng/200 nL) elicited elaborate defensive behaviours interspersed with exploratory responses. This escape behaviour was followed by significantly increased pain thresholds, a phenomenon known as fear-induced antinociception. Furthermore, at 5 and 14 days after DRN serotonin-containing neurons were damaged using the selective neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), the frequency and duration of alertness and escape behaviour evoked by the GABA(A) receptor blockade in the DMH decreased, as well as fear-induced antinociception. Pre-treatment with the non-selective 5-HT receptor antagonist methysergide, the 5-HT(2A/2C) receptor antagonist ketanserin and the 5-HT(2A) receptor selective antagonist R-96544 in the LC also decreased fear-induced antinociception, without significant changes in the expression of defensive behaviours. These data suggest that the serotonergic neurons of the DRN are directly involved in the organisation of defensive responses as well as in the elaboration of the innate fear-induced antinociception. However, serotonin-mediated inputs from the NDR to the LC modulate only fear-induced antinociception and not the defensive behaviours evoked by GABA(A) receptor blockade in the DMH.


Asunto(s)
Núcleo Hipotalámico Dorsomedial/fisiología , Miedo/fisiología , Locus Coeruleus/fisiología , Dimensión del Dolor/métodos , Núcleos del Rafe/fisiología , Neuronas Serotoninérgicas/fisiología , Animales , Miedo/psicología , Masculino , Vías Nerviosas/fisiología , Ratas , Ratas Wistar
14.
Pharmacol Biochem Behav ; 101(2): 265-70, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22197708

RESUMEN

The present work aimed to investigate the effects of acute sucrose treatment on the perception of painful stimuli. Specifically, we sought to determine the involvement of the endogenous opioid peptide-mediated system as well as the role of the µ(1)-opioid receptor in antinociception organisation induced by acute sucrose intake. Nociception was assessed with the tail-flick test in rats (75, 150 and 250 g) of different ages acutely pre-treated with 500 µL of a sucrose solution (25, 50, 150 and 250 g/L) or tap water. Young and Adult rats (250 g) showed antinociception after treatment with 50 g/L (during 5 min) and 150 g/L and 250 g/L (during 20 min) sucrose solutions. Surprisingly, this antinociception was more consistent in mature adult rodents than in pups. To evaluate the role of opioid systems, mature adult rodents were pre-treated with different doses (0.25, 1 or 4 mg/kg) of the non-selective opioid receptor antagonist naloxone, the selective µ(1)-opioid receptor antagonist naloxonazine or vehicle followed by 250 g/L sucrose solution treatment. Sucrose-induced antinociception was reduced by pre-treatment with both naloxone and naloxonazine. The present findings suggest that sweet substance-induced hypo-analgesia is augmented by increasing sucrose concentrations in young and adult rodents. Acute oral sucrose treatment inhibits pain in laboratory animal by mediating endogenous opioid peptide and µ(1)-opioid receptor actions.


Asunto(s)
Analgésicos/administración & dosificación , Péptidos Opioides/fisiología , Dimensión del Dolor/efectos de los fármacos , Receptores Opioides mu/fisiología , Sacarosa/administración & dosificación , Administración Oral , Animales , Relación Dosis-Respuesta a Droga , Masculino , Dimensión del Dolor/métodos , Ratas , Ratas Wistar , Gusto
15.
Neuropeptides ; 46(1): 39-47, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22104092

RESUMEN

BACKGROUND: The aim of the present work was to investigate the involvement of the µ1-endogenous opioid peptide receptor-mediated system in post-ictal antinociception. METHODS: Antinociceptive responses were determined by the tail-flick test after pre-treatment with the selective µ1-opioid receptor antagonist naloxonazine, peripherally or centrally administered at different doses. RESULTS: Peripheral subchronic (24 h) pre-treatment with naloxonazine antagonised the antinociception elicited by tonic-clonic seizures. Acute (10 min) pre-treatment, however, did not have the same effect. In addition, microinjections of naloxonazine into the central, dorsal cortical and external cortical nuclei of the inferior colliculus antagonised tonic-clonic seizure-induced antinociception. Neither acute (10-min) peripheral pre-treatment with naloxonazine nor subchronic intramesencephalic blockade of µ1-opioid receptors resulted in consistent statistically significant differences in the severity of tonic-clonic seizures shown by Racine's index (1972), although the intracollicular specific antagonism of µ1-opioid receptor decreased the duration of seizures. CONCLUSION: µ1-Opioid receptors and the inferior colliculus have been implicated in several endogenous opioid peptide-mediated responses such as antinociception and convulsion. The present findings suggest the involvement of µ1-opiate receptors of central and pericentral nuclei of the inferior colliculus in the modulation of tonic-clonic seizures and in the organisation of post-ictal antinociception.


Asunto(s)
Colículos Inferiores/efectos de los fármacos , Péptidos Opioides/metabolismo , Pentilenotetrazol/administración & dosificación , Receptores Opioides mu/metabolismo , Animales , Colículos Inferiores/metabolismo , Masculino , Naloxona/administración & dosificación , Naloxona/análogos & derivados , Naloxona/farmacología , Pentilenotetrazol/farmacología , Ratas , Ratas Wistar , Receptores Opioides mu/antagonistas & inhibidores , Convulsiones/inducido químicamente , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
16.
Epilepsy Behav ; 22(2): 165-77, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21813330

RESUMEN

The postictal state is generally followed by antinociception. It is known that connections between the dorsal raphe nucleus, the periaqueductal gray matter, and the locus coeruleus, an important noradrenergic brainstem nucleus, are involved in the descending control of ascending nociceptive pathways. The aim of the present study was to determine whether noradrenergic mechanisms in the locus coeruleus are involved in postictal antinociception. Yohimbine (an α(2)-receptor antagonist) or propranolol (a ß-receptor antagonist) was microinjected unilaterally into the locus coeruleus, followed by intraperitoneal administration of pentylenetetrazole (PTZ), a noncompetitive antagonist that blocks GABA-mediated Cl(-) influx. Although the administration of both yohimbine and propranolol to the locus coeruleus/subcoeruleus area resulted in a significant decrease in tonic or tonic-clonic seizure-induced antinociception, the effect of yohimbine restricted to the locus coeruleus was more distinct compared with that of propranolol, possibly because of the presynaptic localization of α(2)-noradrenergic receptors in locus coeruleus neurons. These effects were related to the modulation of noradrenergic activity in the locus coeruleus. Interestingly, microinjections of noradrenaline into the locus coeruleus also decrease the postictal antinociception. The present results suggest that the mechanism underlying postictal antinociception involves both α(2)- and ß-noradrenergic receptors in the locus coeruleus, although the action of noradrenaline on these receptors causes a paradoxical effect, depending on the nature of the local neurotransmission.


Asunto(s)
Neuronas Adrenérgicas/efectos de los fármacos , Locus Coeruleus/citología , Norepinefrina/farmacología , Umbral del Dolor/efectos de los fármacos , Receptores Adrenérgicos alfa 2/metabolismo , Convulsiones/fisiopatología , Transmisión Sináptica/efectos de los fármacos , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Antagonistas de Receptores Adrenérgicos alfa 2/uso terapéutico , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Vías de Administración de Medicamentos , Esquema de Medicación , Interacciones Farmacológicas , Locus Coeruleus/efectos de los fármacos , Masculino , Microinyecciones , Dimensión del Dolor/efectos de los fármacos , Pentilenotetrazol/toxicidad , Propranolol/farmacología , Ratas , Ratas Wistar , Tiempo de Reacción/efectos de los fármacos , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Yohimbina/farmacología , Yohimbina/uso terapéutico
17.
Neurosci Lett ; 379(3): 169-73, 2005 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-15843057

RESUMEN

In order to investigate the effects of monoaminergic mechanisms of the dorsal raphe nucleus on the elaboration and control of sweet-substance-induced antinociception, male albino Wistar rats weighing 180-200 g received sucrose solution (250 g/L) for 14 days as their only source of liquid. After the chronic consumption of sucrose solution, each animal was pretreated with unilateral microinjection of methiothepin mesylate (5.0 microg/0.2 microL), or methysergide maleate (5.0 microg/0.2 microL) in the dorsal raphe nucleus. Each rat consumed an average of 15.6g sucrose/day. Their tail withdrawal latencies in the tail-flick test were measured immediately before and after this treatment. An analgesia index was calculated from the withdrawal latencies before and after the pharmacological treatment. The blockade of serotonergic receptor in the dorsal raphe nucleus with methysergide after the chronic intake of sucrose decreased the sweet-induced antinociception. However, microinjections of methiothepin in the dorsal raphe nucleus did not cause a similar effect on the tail-flick latencies after the chronic intake of sucrose solution, increasing the sweet-substance-induced analgesia. These results indicate the involvement of serotonin as a neurotransmitter in the sucrose-produced antinociception. Considering that the blockade of pre-synaptic serotonergic receptors of the neural networks of the dorsal raphe nucleus with methiothepin did not decrease the sweet-substance-induced antinociception, and the central blockade of post-synaptic serotonergic receptors decreased the sucrose-induced analgesia, the modulation of the release of serotonin in the neural substrate of the dorsal raphe nucleus seems to be crucial for the organization of this interesting antinociceptive process.


Asunto(s)
Analgesia , Red Nerviosa/fisiología , Núcleos del Rafe/efectos de los fármacos , Receptores de Serotonina/fisiología , Sacarosa/farmacología , Sinapsis/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Masculino , Metiotepina/farmacología , Metisergida/farmacología , Microinyecciones/métodos , Red Nerviosa/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Ratas , Ratas Wistar , Receptores de Serotonina/efectos de los fármacos , Antagonistas de la Serotonina/farmacología , Sinapsis/fisiología , Factores de Tiempo
18.
Pharmacol Biochem Behav ; 79(2): 367-76, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15501314

RESUMEN

The blockade of GABA-mediated Cl(-) influx with pentylenetetrazol (PTZ) was used in the present work to induce seizures in animals. The neurotransmission in the postictal period has been the focus of many studies, and there is evidence suggesting antinociceptive mechanisms following tonic-clonic seizures in both animals and men. The aim of this work was to study the involvement of acetylcholine in the antinociception induced by convulsions elicited by peripheral administration of PTZ (64 mg/kg). Analgesia was measured by the tail-flick test in eight albino Wistar rats per group. Convulsions were followed by significant increases in tail-flick latencies (TFLs) at least for 120 min of the postictal period. Peripheral administration of atropine (0.25, 1 and 4 mg/kg) caused a significant dose-dependent decrease in the TFL in seizing animals, as compared to controls. These data were corroborated by peripheral administration of mecamylamine, a nicotinic cholinergic receptor blocker, at the same doses (0.25, 1 and 4 mg/kg) used for the muscarinic cholinergic receptor antagonist. The recruitment of the muscarinic receptor was made 10 min postconvulsions and in subsequent periods of postictal analgesia, whereas the involvement of the nicotinic cholinergic receptor was implicated only after 30 min postseizures. The cholinergic antagonists caused a minimal reduction in body temperature, but did not impair baseline TFL, spontaneous exploration or motor coordination in the rotarod test at the maximal dose of 4 mg/kg. These results indicate that acetylcholine may be involved as a neurotransmitter in postictal analgesia.


Asunto(s)
Epilepsia/fisiopatología , Nociceptores/fisiopatología , Receptores Muscarínicos/fisiología , Receptores Nicotínicos/fisiología , Animales , Atropina/farmacología , Cloruros/metabolismo , Convulsivantes/toxicidad , Epilepsia/inducido químicamente , Antagonistas del GABA/toxicidad , Masculino , Mecamilamina/farmacología , Antagonistas Muscarínicos/farmacología , Antagonistas Nicotínicos/farmacología , Dimensión del Dolor , Pentilenotetrazol/toxicidad , Ratas , Ratas Wistar , Receptores de GABA-A/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA