Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Drug Deliv Sci Technol ; 81: 104229, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36776572

RESUMEN

The compound 3a,10b-dihydro-1H-cyclopenta[b]naphtho[2,3-d]furan-5,10-dione (IVS320) is a naphthoquinone with antifungal and antichagasic potential, which however has low aqueous solubility. To increase bioavailability, inclusion complexes with ß-cyclodextrin (ßCD) and methyl-ß-cyclodextrin (MßCD) were prepared by physical mixture (PM), kneading (KN) and rotary evaporation (RE), and their in vitro anti-SARS-CoV-2 and antichagasic potential was assessed. The formation of inclusion complexes led to a change in the physicochemical characteristics compared to IVS320 alone as well as a decrease in crystallinity degree that reached 74.44% for the IVS320-MßCD one prepared by RE. The IVS320 and IVS320-MßCD/RE system exhibited anti-SARS-CoV-2 activity, showing half maximal effective concentrations (EC50) of 0.47 and 1.22 µg/mL, respectively. Molecular docking simulation suggested IVS320 ability to interact with the SARS-CoV-2 viral protein. Finally, the highest antichagasic activity, expressed as percentage of Tripanosoma cruzi growth inhibition, was observed with IVS320-ßCD/KN (70%) and IVS320-MßCD/PM (72%), while IVS320 alone exhibited only approximately 48% inhibition at the highest concentration (100 µg/mL).

2.
Pharmaceutics ; 14(3)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35335875

RESUMEN

Trypanosoma cruzi is a protozoan parasite responsible for Chagas disease, which affects millions around the world and is not treatable in its chronic stage. Sodium diethyldithiocarbamate is a compound belonging to the carbamate class and, in a previous study, demonstrated high efficacy against T. cruzi, showing itself to be a promising compound for the treatment of Chagas disease. This study investigates the encapsulation of sodium diethyldithiocarbamate by poly-lactic acid in nanoparticles, a system of biodegradable nanoparticles that is capable of reducing the toxicity caused by free DETC against cells and maintaining the antiparasitic activity. The nanosystem PLA-DETC was fabricated using nanoprecipitation, and its physical characterization was measured via DLS, SEM, and AFM, demonstrating a small size around 168 nm and a zeta potential of around -19 mv. Furthermore, the toxicity was determined by MTT reduction against three cell lines (VERO, 3T3, and RAW), and when compared to free DETC, we observed a reduction in cell mortality, demonstrating the importance of DETC nanoencapsulation. In addition, the nanoparticles were stained with FITC and put in contact with cells for 24 h, followed by confirmation of whether the nanosystem was inside the cells. Lastly, the antiparasitic activity against different strains of T. cruzi in trypomastigote forms was determined by resazurin reduction and ROS production, which demonstrated high efficacy towards T. cruzi equal to that of free DETC.

3.
Sci Rep ; 11(1): 11200, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34045624

RESUMEN

Chagas disease is caused by Trypanosoma cruzi and affects thousands of people. Drugs currently used in therapy are toxic and have therapeutic limitations. In addition, the genetic diversity of T. cruzi represents an important variable and challenge in treatment. Sodium diethyldithiocarbamate (DETC) is a compound with pharmacological versatility acting as metal chelators and ROS generation. Thus, the objective was to characterize the antiparasitic action of DETC against different strains and forms of T. cruzi and their mechanism. The different strains of T. cruzi were grown in LIT medium. To evaluate the antiparasitic activity of DETC, epimastigote and trypomastigote forms of T. cruzi were used by resazurin reduction methods and by counting. Different response patterns were obtained between the strains and an IC50 of DETC ranging from 9.44 ± 3,181 to 60.49 ± 7.62 µM. Cell cytotoxicity against 3T3 and RAW cell lines and evaluated by MTT, demonstrated that DETC in high concentration (2222.00 µM) presents low toxicity. Yet, DETC causes mitochondrial damage in T. cruzi, as well as disruption in parasite membrane. DETC has antiparasitic activity against different genotypes and forms of T. cruzi, therefore, representing a promising molecule as a drug for the treatment of Chagas disease.


Asunto(s)
Enfermedad de Chagas/parasitología , Ditiocarba/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos
4.
Molecules ; 25(11)2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503272

RESUMEN

Neglected tropical diseases such as Chagas disease and leishmaniasis affect millions of people around the world. Both diseases affect various parts of the globe and drugs traditionally used in therapy against these diseases have limitations, especially with regard to low efficacy and high toxicity. In this context, the class of bisphosphonate-based compounds has made significant advances regarding the chemical synthesis process as well as the pharmacological properties attributed to these compounds. Among this spectrum of pharmacological activity, bisphosphonate compounds with antiparasitic activity stand out, especially in the treatment of Chagas disease and leishmaniasis caused by Trypanosoma cruzi and Leishmania spp., respectively. Some bisphosphonate compounds can inhibit the mevalonate pathway, an essential metabolic pathway, by interfering with the synthesis of ergosterol, a sterol responsible for the growth and viability of these parasites. Therefore, this review aims to present the information about the importance of these compounds as antiparasitic agents and as potential new drugs to treat Chagas disease and leishmaniasis.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Difosfonatos/farmacología , Leishmania infantum/efectos de los fármacos , Leishmaniasis/tratamiento farmacológico , Trypanosoma cruzi/efectos de los fármacos , Animales , Antiparasitarios , Enfermedad de Chagas/parasitología , Humanos , Leishmaniasis/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...