Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 49(36): 3736-8, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23392479

RESUMEN

This article presents a facile strategy to combine Eu(3+) and Gd(3+) ions into coacervate core micelles in a controlled way with a statistical distribution of the ions. Consequently, the formed micelles show a high tunability between luminescence and relaxivity. These highly stable micelles present great potential for new materials, e.g. as bimodal imaging probes.

2.
Langmuir ; 27(24): 14776-82, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22035496

RESUMEN

The effect of pH on iron-containing complex coacervate core micelles [Fe(III)-C3Ms] is investigated in this paper. The Fe(III)-C3Ms are formed by mixing cationic poly(N-methyl-2-vinylpyridinium iodide)-b-poly(ethylene oxide) [P2MVP(41)-b-PEO(205)] and anionic iron coordination polymers [Fe(III)-L(2)EO(4)] at stoichiometric charge ratio. Light scattering and Cryo-TEM have been performed to study the variations of hydrodynamic radius and core structure with changing pH. The hydrodynamic radius of Fe(III)-C3Ms is determined mainly by the corona and does not change very much in a broad pH range. However, Cryo-TEM pictures and magnetic relaxation measurements indicate that the structure of the micellar cores changes upon changing the pH, with a more crystalline, elongated shape and lower relaxivity at high pH. We attribute this to the formation of mixed iron complexes in the core, involving both the bis-ligand and hydroxide ions. These complexes are stabilized toward precipitation by the diblock copolymer.


Asunto(s)
Complejos de Coordinación/química , Compuestos Férricos/química , Nanoestructuras/química , Nanotecnología/métodos , Cationes , Concentración de Iones de Hidrógeno , Luz , Espectroscopía de Resonancia Magnética , Micelas , Microscopía Electrónica de Transmisión , Polietilenglicoles/química , Compuestos de Piridinio/química , Dispersión del Ángulo Pequeño , Soluciones , Compuestos de Vinilo/química
3.
Colloid Polym Sci ; 289(8): 889-902, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21765579

RESUMEN

We discuss the structure and formation of Ionomer Complexes formed upon mixing a grafted block copolymer (poly(acrylic acid)-b-poly(acrylate methoxy poly(ethylene oxide)), PAA(21)-b-PAPEO(14)) with a linear polyelectrolyte (poly(N-methyl 2-vinyl pyridinium iodide), P2MVPI), called grafted block ionomer complexes (GBICs), and a chemically identical grafted copolymer (poly(acrylic acid)-co-poly(acrylate methoxy poly(ethylene oxide)), PAA(28)-co-PAPEO(22)) with a linear polyelectrolyte, called grafted ionomer complexes (GICs). Light scattering measurements show that GBICs are much bigger (~70-100 nm) and GICs are much smaller or comparable in size (6-22 nm) to regular complex coacervate core micelles (C3Ms). The mechanism of GICs formation is different from the formation of regular C3Ms and GBICs, and their size depends on the length of the homopolyelectrolyte. The sizes of GBICs and GICs slightly decrease with temperature increasing from 20 to 65 °C. This effect is stronger for GBICs than for GICs, is reversible for GICs and GBIC-PAPEO(14)/P2MVPI(228), and shows some hysteresis for GBIC-PAPEO(14)/P2MVPI(43). Self-consistent field (SCF) calculations for assembly of a grafted block copolymer (having clearly separated charged and grafted blocks) with an oppositely charged linear polyelectrolyte of length comparable to the charged copolymer block predict formation of relatively small spherical micelles (~6 nm), with a composition close to complete charge neutralization. The formation of micellar assemblies is suppressed if charged and grafted monomers are evenly distributed along the backbone, i.e., in case of a grafted copolymer. The very large difference between the sizes found experimentally for GBICs and the sizes predicted from SCF calculations supports the view that there is some secondary association mechanism. A possible mechanism is discussed.

4.
Colloid Polym Sci ; 288(16-17): 1621-1632, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21125002

RESUMEN

We have studied the formation and the stability of ionomer complexes from grafted copolymers (GICs) in solution and the influence of GIC coatings on the adsorption of the proteins ß-lactoglobulin (ß-lac), bovine serum albumin (BSA), and lysozyme (Lsz) on silica and polysulfone. The GICs consist of the grafted copolymer PAA(28)-co-PAPEO(22) {poly(acrylic acid)-co-poly[acrylate methoxy poly(ethylene oxide)]} with negatively charged AA and neutral APEO groups, and the positively charged homopolymers: P2MVPI(43) [poly(N-methyl 2-vinyl pyridinium iodide)] and PAH∙HCl(160) [poly(allylamine hydrochloride)]. In solution, these aggregates are characterized by means of dynamic and static light scattering. They appear to be assemblies with hydrodynamic radii of 8 nm (GIC-PAPEO(22)/P2MVPI(43)) and 22 nm (GIC-PAPEO(22)/PAH∙HCl(160)), respectively. The GICs partly disintegrate in solution at salt concentrations above 10 mM NaCl. Adsorption of GICs and proteins has been studied with fixed angle optical reflectometry at salt concentrations ranging from 1 to 50 mM NaCl. Adsorption of GICs results in high density PEO side chains on the surface. Higher densities were obtained for GICs consisting of PAH∙HCl(160) (1.6 ÷ 1.9 chains/nm(2)) than of P2MVPI(43) (0.6 ÷ 1.5 chains/nm(2)). Both GIC coatings strongly suppress adsorption of all proteins on silica (>90%); however, reduction of protein adsorption on polysulfone depends on the composition of the coating and the type of protein. We observed a moderate reduction of ß-lac and Lsz adsorption (>60%). Adsorption of BSA on the GIC-PAPEO(22)/P2MVPI(43) coating is moderately reduced, but on the GIC-PAPEO(22)/PAH∙HCl(160) coating it is enhanced.

5.
Colloid Polym Sci ; 288(10-11): 1081-1095, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20671774

RESUMEN

We have studied the formation and the stability of grafted block complex coacervate core micelles (C3Ms) in solution and the influence of grafted block C3M coatings on the adsorption of the proteins beta-lactoglobulin, bovine serum albumin, and lysozyme. The C3Ms consist of a grafted block copolymer PAA(21)-b-PAPEO(14) (poly(acrylic acid)-b-poly(acrylate methoxy poly(ethylene oxide)), with a negatively charged PAA block and a neutral PAPEO block and a positively charged homopolymer P2MVPI (poly(N-methyl 2-vinyl pyridinium iodide). In solution, these C3Ms partly disintegrate at salt concentrations between 50 and 100 mM NaCl. Adsorption of C3Ms and proteins has been studied with fixed-angle optical reflectometry, at salt concentrations ranging from 1 to 100 mM NaCl. In comparison with the adsorption of PAA(21)-b-PAPEO(14) alone adsorption of C3Ms significantly increases the amount of PAA(21)-b-PAPEO(14) on the surface. This results in a higher surface density of PEO chains. The stability of the C3M coatings and their influence on protein adsorption are determined by the composition and the stability of the C3Ms in solution. A C3M-PAPEO(14)/P2MVPI(43) coating strongly suppresses the adsorption of all proteins on silica and polystyrene. The reduction of protein adsorption is the highest at 100 mM NaCl (>90%). The adsorbed C3M-PAPEO(14)/P2MVPI(43) layer is partly removed from the surface upon exposure to an excess of beta-lactoglobulin solution, due to formation of soluble aggregates consisting of beta-lactoglobulin and P2MVPI(43). In contrast, C3M-PAPEO(14)/P2MVPI(228) which has a fivefold longer cationic block enhances adsorption of the negatively charged proteins on both surfaces at salt concentrations above 1 mM NaCl. A single PAA(21)-b-PAPEO(14) layer causes only a moderate reduction of protein adsorption.

6.
J Phys Chem B ; 114(25): 8313-9, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20524637

RESUMEN

Complex coacervate core micelles (C3Ms) from cationic poly(N-methyl-2-vinyl-pyridinium iodide)-b-poly(ethylene oxide) (P2MVP(41)-b-PEO(205)) and anionic iron coordination polymers are investigated in the present work. Micelle formation is studied by light scattering for both Fe(II)- and Fe(III)-containing C3Ms. At the stoichiometric charge ratio, both Fe(II)-C3Ms and Fe(III)-C3Ms are stable for at least 1 week at room temperature. Excess of iron coordination polymers has almost no effect on the formed Fe(II)-C3Ms and Fe(III)-C3Ms, whereas excess of P2MVP(41)-b-PEO(205) copolymers in the solution can dissociate the formed micelles. Upon increasing salt concentration, the scattering intensity decreases. This decrease is due to both a decrease in the number of micelles (or an increase in CMC) and a decrease in aggregation number. The salt dependence of the CMC and the aggregation number is explained using a scaling argument for C3M formation. Compared with Fe(II)-C3Ms, Fe(III)-C3Ms have a lower CMC and a higher stability against dissociation by added salt.

7.
Langmuir ; 26(1): 249-59, 2010 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-19697905

RESUMEN

At the moment two competing explanations exist for the experimental finding that net negatively charged proteins adsorb on or absorb in negatively charged polyelectrolyte brushes. One explanation is based on the possibility of charge regulation. The idea is that a protein can reverse its charge when it is in the presence of the high electrostatic potential of the brush and then can be inserted. The other explanation relies on the charge anisotropy of proteins, that is, that it carries positively charged and negatively charged patches. The positively charged region gains more energy from interacting with the negative brush than the negative charged patch loses, especially when the charge densities and electrostatic potentials are high, thus providing a net attraction. We present a model in which both mechanisms are combined. We confirm that both charge anisotropy and charge regulation effects on their own can be responsible for protein uptake at the "wrong" side of the isoelectric point (IEP). In addition, we find that the respective effects are additive. Indeed, taking both effects into account results in a stronger attraction between a PE brush and protein at the IEP, and the attraction is found further above the IEP than the individual effects would have made possible. Still, for patchiness to have a strong contribution, the patches need very high charge densities. Therefore, we argue that for most types of protein charge reversal will be the main driving force for adsorption on the wrong side of the IEP, while patchiness will contribute less.


Asunto(s)
Electrólitos/química , Proteínas Inmovilizadas/química , Polímeros/química , Proteínas/química , Adsorción , Animales , Bovinos , Concentración de Iones de Hidrógeno , Albúmina Sérica Bovina/química , Electricidad Estática
8.
J Colloid Interface Sci ; 339(2): 317-24, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19716564

RESUMEN

We describe the preparation and characterisation of inorganic-organic hybrid block copolymer silver nanoparticles via the preparation of spherical multi-responsive polymeric micelles of poly(N-methyl-2-vinyl pyridinium iodide)-block-poly(ethylene oxide), P2MVP(38)-b-PEO(211) and poly(acrylic acid)-block-poly(isopropyl acrylamide), PAA(55)-b-PNIPAAm(88) in the presence of AgNO(3). Hence, the P2MVP and PAA segments were employed to fix Ag(+) ions within the micellar core (25 degrees C) or shell (60 degrees C), while the PEO segments ensured spontaneous reduction of Ag(+) ions into metallic Ag, as well as colloidal stabilisation. Spherical and elongated composite core-shell(-corona) nanoparticles (CNPs) were formed containing several small, spherical silver nanoparticles within the micellar core or shell. As the co-assembly of the oppositely charged copolymers into micelles is electrostatically driven, the CNPs can be destabilised by, for example, addition of simple salts, i.e., the CNPs are stimuli responsive. CNP size and morphology control can be achieved via the preparation protocol. For example, heating to 60 degrees C, i.e., above the PNIPAAm LCST, results in core-shell-corona CNPs with the Ag-NPs situated in the aggregate shell.


Asunto(s)
Nanopartículas , Plata , Microscopía por Crioelectrón , Estabilidad de Medicamentos , Micelas , Microscopía Electrónica de Transmisión , Nanopartículas/química , Polietilenglicoles , Soluciones , Compuestos de Vinilo
9.
Langmuir ; 25(16): 9252-61, 2009 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-19719223

RESUMEN

The adsorption of the anionic surfactants sodium dodecyl sulfate (SDS) and sodium dodecyl benzene sulfonate (SDBS) in poly(ethylene oxide) (PEO) brushes was studied using a fixed-angle optical flow-cell reflectometer. We show that, just as in solution, there is a critical association concentration (CAC) for the surfactants at which adsorption in the PEO brush starts. Above the critical micelle concentration (CMC) the adsorption is found to be completely reversible. At low brush density the adsorption per PEO monomer is equal to the adsorption of these surfactants in bulk solution. However, with increasing brush density, the number of adsorbed surfactant molecules per PEO monomer decreases rapidly. This decrease is explained in terms of excluded volume interactions plus electrostatic repulsion between the negatively charged surfactant micelles. Experimentally, a plateau value in the total adsorption is observed as a function of grafting density. The experimental results were compared to the results of an analytical self-consistent field (aSCF) model, and we found quantitative agreement. Additionally, the model predicts that the plateau value found is in fact a maximum. Both experiments and model calculations show that the adsorption scales directly with the polymerization degree of the polymers in the brush. They also show that an increase in the ionic strength leads to an increase in the adsorbed amount, which is explained as being due to a decrease in the electrostatic penalty for the adsorption of the SDS micelles. The adsorption of SDS micelles changes the interactions of the PEO brush with a silica particle. This is illustrated by atomic force microscopy (AFM) measurements of the pull-off force of a silica particle from a PEO brush: at high enough PEO densities, the addition of SDS leads to a very strong reduction in the force necessary to detach the colloidal silica particle from the PEO brush. We attribute this effect to the large amount of negative charge incorporated in the PEO brush due to SDS adsorption.

10.
Langmuir ; 25(22): 12899-908, 2009 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-19735114

RESUMEN

We investigated the formation of nanoribbon hydrogels in a mixed system of zinc ions, bis(ligand)s, and triblock peptide copolymers. Using a combination of experimental techniques: dynamic light scattering, cryo-transmission electron microscopy, small-angle X-ray scattering and circular dichroism, we arrived at a model for the formation of nanoribbon hydrogels in which well-defined nanoribbons are formed out of multiple supramolecular interactions: (1) metal coordination that yields supramolecular polyelectrolytes; (2) electrostatic complexation between the supramolecular polyelectrolytes and the oppositely charged blocks of the peptide copolymers; (3) hydrogen bond and (4) hydrophobic interactions that support the secondary and ternary structure of the ribbons; (5) van der Waals interactions that enable bundling of the ribbons.


Asunto(s)
Hidrogeles/química , Nanoestructuras/química , Péptidos/química , Modelos Químicos , Nanotecnología
11.
Angew Chem Int Ed Engl ; 48(29): 5369-71, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19533705

RESUMEN

Standing room only: Dense polymer brushes can be prepared by adsorbing a diblock copolymer comprising a neutral block and a polyelectrolyte block to an oppositely charged polyelectrolyte brush (see picture). The density of the resulting neutral brush is determined by charge compensation, leading to brush densities well over 1 nm(-2). The diblock copolymer can be desorbed by changing the solution conditions.

12.
Langmuir ; 25(8): 4490-7, 2009 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-19243149

RESUMEN

Using fixed-angle ellipsometry, we investigate the degree of mass transfer upon vertically dipping a polystyrene surface through a layer of a polystyrene-poly(ethylene oxide) (PS-PEO) block copolymer at the air water interface (Langmuir-Blodgett or LB transfer). The transferred mass is proportional to the PS-PEO grafting density at the air-water interface, but the transferred mass is not equal to the mass at the air-water interface. We find that depending on the chain length of the PEO block only a certain fraction of the polymers at the air-water interface is transferred to the solid surface. For the shortest PEO chain length (PS36-PEO148), the mass transfer amounts to 94%, while for longer chain lengths (PS36-PEO370 and PS38-PEO770), a transfer of, respectively 57% and 19%, is obtained. We attribute this reduced mass transfer to a competition for the PS surface between the PEO block and the PS block. Atomic force microscopy shows that after transfer the material is evenly spread over the surface. However, upon a short heating of these transferred layers (95 degrees C, 5 min) a dewetting of the PS-PEO layer takes place. These results have a significant impact on the interpretation of the results in a number of papers in which the above-described transfer method was used to produce PEO polymer brushes, in a few cases in combination with heating. We briefly review these papers and discuss their main results in light of this new information. Furthermore, we show that, by using Langmuir-Schaeffer (LS, horizontal) dipping, much higher mass transfers can be reached than with the LB method. When the LB or LS methods are carefully applied, it is a very powerful technique to produce PEO brushes, as it gives full control over both the grafting density and the chain length.

13.
Adv Colloid Interface Sci ; 147-148: 300-18, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19038373

RESUMEN

In this review we present an overview of the literature on the co-assembly of neutral-ionic block, graft, and random copolymers with oppositely charged species in aqueous solution. Oppositely charged species include synthetic (co)polymers of various architectures, biopolymers - such as proteins, enzymes and DNA - multivalent ions, metallic nanoparticles, low molecular weight surfactants, polyelectrolyte block copolymer micelles, metallo-supramolecular polymers, equilibrium polymers, etcetera. The resultant structures are termed complex coacervate core/polyion complex/block ionomer complex/interpolyelectrolyte complex micelles (or vesicles); i.e., in short C3Ms (or C3Vs) and PIC, BIC or IPEC micelles (and vesicles). Formation, structure, dynamics, properties, and function will be discussed. We focus on experimental work; theory and modelling will not be discussed. Recent developments in applications and micelles with heterogeneous coronas are emphasized.

14.
Langmuir ; 24(21): 12221-7, 2008 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-18828617

RESUMEN

Two-dimensional NMR and small-angle neutron scattering experiments were performed on comicelles of poly(N-methyl-2-vinyl pyridinium iodide)-block-poly(ethylene oxide), P2MVP-b-PEO, and poly(acrylic acid)-block-poly(acryl amide), PAA-b-PAAm, in aqueous solutions to study whether a transition between a heterogeneous (Janus-type) and homogeneous corona can be observed upon a variation of parameters that are anticipated to affect the miscibility of the PEO and PAAm coronal blocks. Investigated were the effect of a salt-induced decrease in micellar aggregation number, P agg for 1

15.
J Phys Chem B ; 112(35): 10908-14, 2008 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-18698720

RESUMEN

We report on the stability of complex coacervate core micelles, i.e., C3Ms (or PIC, BIC micelles), containing metal coordination polymers. In aqueous solutions these micelles are formed between charged-neutral diblock copolymers and oppositely charged coordination polymers formed from metal ions and bisligand molecules. The influence of added salt, polymer concentration, and charge composition was investigated by using light scattering and cryo-TEM techniques. The scattering intensity decreases strongly with increasing salt concentration until a critical salt concentration beyond which no micelles exist. The critical micelle concentration increases almost exponentially with the salt concentration. From the scattering results it follows that the aggregation number decreases with the square root of the salt concentration, but the hydrodynamic radius remains constant or increases slightly. It was concluded that the density of the core decreases with increasing ionic strength. This is in agreement with theoretical predictions and is also confirmed by cryo-TEM measurements. A complete composition diagram was constructed based on the composition boundaries obtained from light scattering titrations.

16.
J Phys Chem B ; 112(23): 6937-45, 2008 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-18489139

RESUMEN

The adsorption of mixed micelles of poly(4-(2-amino hydrochloride-ethylthio)-butylene)- block-poly(ethylene oxide), PAETB 49- b-PEO 212 and poly(4-(2-sodium carboxylate-ethylthio)-butylene)- block-poly(ethylene oxide), PCETB 47- b-PEO 212 on solid/liquid interfaces has been studied with light, X-ray, and neutron reflectometry. The structure of the adsorbed layer can be described with a two-layer model consisting of an inner layer formed by the coacervate of the polyelectrolyte blocks PAETB 49 and PCETB 47 ( approximately 1 nm) and an outer layer of PEO 212 blocks ( approximately 6 nm). The micelles unfold upon adsorption forming a rather homogeneous flat layer that exposes its polyethylene oxide chains into the solution, thus rendering the surface antifouling after modification with the micelles.

17.
Langmuir ; 24(13): 6575-84, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18507422

RESUMEN

The adsorption of bovine serum albumin (BSA) in a planar poly(acrylic acid) (PAA) brush layer has been studied by fixed-angle optical reflectometry. The influence of polymer length, grafting density, and salt concentration is studied as a function of pH. The results are compared with predictions of an analytical polyelectrolyte brush model, which incorporates charge regulation and excluded volume interactions. A maximum in adsorption is found near the point of zero charge (pzc) of the protein. At the maximum, BSA accumulates in a PAA brush to at least 30 vol %. Substantial adsorption continues above the pzc, that is, in the pH range where a net negatively charged protein adsorbs into a negatively charged brush layer, up to a critical pH value. This critical pH value decreases with increasing ionic strength. The adsorbed amount increases strongly with both increasing PAA chain length and increasing grafting density. Experimental data compare well with the analytical model without having to include a nonhomogeneous charge distribution on the protein surface. Instead, charge regulation, which implies that the protein adjusts its charge due to the negative electrostatic potential in the brush, plays an important role in the interpretation of the adsorbed amounts. Together with nonelectrostatic interactions, it explains the significant protein adsorption above the pzc.


Asunto(s)
Resinas Acrílicas/química , Albúmina Sérica Bovina/química , Adsorción , Animales , Bovinos , Técnicas de Química Analítica , Concentración de Iones de Hidrógeno , Óptica y Fotónica , Concentración Osmolar , Sales (Química)
19.
J Phys Chem B ; 111(40): 11662-9, 2007 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-17880123

RESUMEN

The formation of wormlike micelles in mixed systems of a supramolecular coordination polymer Zn-L2EO4 and a diblock copolymer P2MVP41-b-PEO205 is investigated by light scattering and Cryo-TEM. By direct mixing at a stoichiometric charge ratio, the above mixtures proved to be capable of formation of spherical micelles with a radius of about 25 nm (Yan et al. Angew. Chem., Int. Ed.; 2007, 46, 1807-1809). Lately, we find wormlike micelles with a hydrodynamic radius >150 nm in a mixture with excess positive charge, that is, a negative charge fraction f- < 0.5. The transformation between wormlike and spherical micelles can be realized by variation of the mixing ratio through different protocols. Upon addition of negatively charged Zn-L2EO4 to a mixture with excess positively charged P2MVP41-b-PEO205, most of the wormlike micelles are transformed into spherical ones; upon addition of positively charged P2MVP41-b-PEO205 to a mixture of pure spherical micelles, wormlike micelles can be produced again. The effect of sample preparation protocol, sample history, and concentration on this transformation process is systematically reported in this article. A possible mechanism for the formation of wormlike micelles is proposed.

20.
J Phys Chem B ; 111(21): 5811-8, 2007 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-17488112

RESUMEN

In this paper we compare the formation of complex coacervate core micelles (C3Ms) from two different tricompontent mixtures, namely neodymium, the bisligand L2EO4 and the poly(cation)-block-poly(neutral) diblock copolymer P2MVP41-b-PEO205, and zinc, L2EO4 and P2MVP41-b-PEO205 mixed systems. Three sets of titration experiments were carried out for each system: (i) titration of diblock copolymer P2MVP41-b-PEO205 with the stoichiometric mixture of metal ions and bisligands, (ii) titration of a mixture of diblock copolymer and bisligand with metal ions, and (iii) titration of a mixture of diblock copolymer and metal ions with bisligands. In all the above three cases, micelles are found to form either in a broad range of charge ratios or in a broad range of metal/bisligand ratios. Upon addition of Nd2-(L2EO4)3 coordination polymer to P2MVP41-b-PEO205 solution, and upon addition of Nd3+ to a mixture of L2EO4 and P2MVP41-b-PEO205, micelles are found to form immediately after the first addition, whereas micelles show up in the similar zinc system only after a certain threshold Zn-(L2EO4) or Zn2+ concentration. This difference can be traced to the different structures of the Nd2-(L2EO4)3 and Zn-(L2EO4) coordination compounds. At very low concentrations, Zn-(L2EO4) are ring-like oligomers, but Nd2-(L2EO4)3 are larger networks. The network structure favors the formation of coacervate micellar core with P2MVP41-b-PEO205. Moreover, excess of Nd3+ ions will break up the C3Ms, while the same amount of Zn2+ has hardly any effect on the C3Ms. The breakdown of C3Ms by Nd3+ is due to the charge inversion of the coordination complex with increasing [Nd3+]/[L2EO4] ratio, which results in repulsive interaction between the coordination complex and the diblock copolymer, whereas no such interaction can occur in the zinc system.


Asunto(s)
Micelas , Neodimio/química , Compuestos Organometálicos/síntesis química , Polímeros/química , Zinc/química , Ligandos , Compuestos Organometálicos/química , Volumetría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA