Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 20610, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36446839

RESUMEN

Seamounts are isolated underwater mountains stretching > 1000 m above the seafloor. They are identified as biodiversity hotspots of marine life, and host benthic assemblages that may vary on regional (among seamounts) and local (within seamounts) scales. Here, we collected seafloor imagery of three seamounts at the Langseth Ridge in the central Arctic Ocean to assess habitats and megabenthos community composition at the Central Mount (CM), the Karasik Seamount (KS), and the Northern Mount (NM). The majority of seafloor across these seamounts comprised bare rock, covered with a mixed layer of sponge spicule mats intermixed with detrital debris composed of polychaete tubes, and sand, gravel, and/or rocks. The megabenthos assemblages consisted of in total 15 invertebrate epibenthos taxa and 4 fish taxa, contributing to mean megabenthos densities of 55,745 ind. ha-1 at CM, 110,442 ind. ha-1 at KS, and 65,849 ind. ha-1 at NM. The faunal assemblages at all three seamounts were dominated by habitat-forming Tetractinellida sponges that contributed between 66% (KS) and 85% (CM) to all megabenthos. Interestingly, taxa richness did not differ at regional and local scale, whereas the megabenthos community composition did. Abiotic and biogenic factors shaping distinct habitat types played a major role in structuring of benthic communities in high-Arctic seamounts.


Asunto(s)
Vendajes , Poríferos , Animales , Biodiversidad , Arena , Imágenes en Psicoterapia
2.
PLoS One ; 16(1): e0241095, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33503057

RESUMEN

Sponges produce distinct fatty acids (FAs) that (potentially) can be used as chemotaxonomic and ecological biomarkers to study endosymbiont-host interactions and the functional ecology of sponges. Here, we present FA profiles of five common habitat-building deep-sea sponges (class Demospongiae, order Tetractinellida), which are classified as high microbial abundance (HMA) species. Geodia hentscheli, G. parva, G. atlantica, G. barretti, and Stelletta rhaphidiophora were collected from boreal and Arctic sponge grounds in the North-Atlantic Ocean. Bacterial FAs dominated in all five species and particularly isomeric mixtures of mid-chain branched FAs (MBFAs, 8- and 9-Me-C16:0 and 10- and 11-Me-C18:0) were found in high abundance (together ≥ 20% of total FAs) aside more common bacterial markers. In addition, the sponges produced long-chain linear, mid- and a(i)-branched unsaturated FAs (LCFAs) with a chain length of 24‒28 C atoms and had predominantly the typical Δ5,9 unsaturation, although the Δ9,19 and (yet undescribed) Δ11,21 unsaturations were also identified. G. parva and S. rhaphidiophora each produced distinct LCFAs, while G. atlantica, G. barretti, and G. hentscheli produced similar LCFAs, but in different ratios. The different bacterial precursors varied in carbon isotopic composition (δ13C), with MBFAs being more enriched compared to other bacterial (linear and a(i)-branched) FAs. We propose biosynthetic pathways for different LCFAs from their bacterial precursors, that are consistent with small isotopic differences found in LCFAs. Indeed, FA profiles of deep-sea sponges can serve as chemotaxonomic markers and support the concept that sponges acquire building blocks from their endosymbiotic bacteria.


Asunto(s)
Organismos Acuáticos , Ácidos Grasos Insaturados/metabolismo , Geodia/metabolismo , Poríferos/microbiología , Animales , Organismos Acuáticos/clasificación , Organismos Acuáticos/metabolismo , Organismos Acuáticos/microbiología
3.
Sci Rep ; 10(1): 17515, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060808

RESUMEN

Deep-sea sponges create hotspots of biodiversity and biological activity in the otherwise barren deep-sea. However, it remains elusive how sponge hosts and their microbial symbionts acquire and process food in these food-limited environments. Therefore, we traced the processing (i.e. assimilation and respiration) of 13C- and 15N-enriched dissolved organic matter (DOM) and bacteria by three dominant North Atlantic deep-sea sponges: the high microbial abundance (HMA) demosponge Geodia barretti, the low microbial abundance (LMA) demosponge Hymedesmia paupertas, and the LMA hexactinellid Vazella pourtalesii. We also assessed the assimilation of both food sources into sponge- and bacteria-specific phospholipid-derived fatty acid (PLFA) biomarkers. All sponges were capable of assimilating DOM as well as bacteria. However, processing of the two food sources differed considerably between the tested species: the DOM assimilation-to-respiration efficiency was highest for the HMA sponge, yet uptake rates were 4-5 times lower compared to LMA sponges. In contrast, bacteria were assimilated most efficiently and at the highest rate by the hexactinellid compared to the demosponges. Our results indicate that phylogeny and functional traits (e.g., abundance of microbial symbionts, morphology) influence food preferences and diet composition of sponges, which further helps to understand their role as key ecosystem engineers of deep-sea habitats.


Asunto(s)
Bacterias/metabolismo , Biodiversidad , Poríferos/metabolismo , Poríferos/microbiología , Agua de Mar/microbiología , Simbiosis , Animales , Bacterias/genética , Biomarcadores , Isótopos de Carbono , ADN Bacteriano , Ácidos Grasos/química , Microbiota , Isótopos de Nitrógeno , Material Particulado , Fosfolípidos/química , Filogenia , Análisis de Secuencia de ADN
4.
Hum Mol Genet ; 15(1): 105-11, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16319127

RESUMEN

Oculopharyngeal muscular dystrophy (OPMD) belongs to the group of protein aggregation disorders and is caused by extensions of the N-terminal polyalanine stretch of the nuclear polyA-binding protein 1 (PABPN1). The presence of PABPN1-containing intranuclear aggregates in skeletal muscle is unique for OPMD and is also observed in transgenic mouse and cell models for OPMD. These models consistently support a direct role for the protein aggregation in OPMD pathogenesis. We have isolated and characterized a diverse panel of single-domain antibody reagents (VHH), recognizing different epitopes in PABPN1. The antibody reagents specifically detect endogenous PABPN1 in cell lysates on western blot and label PABPN1 in cultured cells and muscle sections. When expressed intracellularly as intrabodies in a cellular model for OPMD, aggregation of PABPN1 was prevented in a dose-dependent manner. More importantly yet, these intrabodies could also reduce the presence of already existing aggregates. Given the domain specificity of VHH-mediated aggregation interference, this approach at least allows the definition of the nucleation kernel in aggregation-prone proteins, thus facilitating etiological insight into this and other protein aggregation disorders, and ultimately, it may well provide useful therapeutic agents.


Asunto(s)
Anticuerpos/metabolismo , Cuerpos de Inclusión/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Oculofaríngea/tratamiento farmacológico , Proteína II de Unión a Poli(A)/genética , Animales , Anticuerpos/uso terapéutico , Western Blotting , Células COS , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Mapeo Epitopo , Células HeLa , Humanos , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...