RESUMEN
INTRODUCTION: Cellular antioxidant signaling can be altered either by thyroid disturbances or by selenium status. AIMS: To investigate whether or not dietary diphenyl diselenide can modify the expression of genes of antioxidant enzymes and endpoint markers of oxidative stress under hypothyroid conditions. METHODS: Female rats were rendered hypothyroid by continuous exposure to methimazole (MTZ; 20 mg/100 ml in the drinking water) for 3 months. Concomitantly, MTZ-treated rats were either fed or not with a diet containing diphenyl diselenide (5 ppm). mRNA levels of antioxidant enzymes and antioxidant/oxidant status were determined in the cerebral cortex, hippocampus and striatum. RESULTS: Hypothyroidism caused a marked upregulation in mRNA expression of catalase, superoxide dismutase (SOD-1, SOD-3), glutathione peroxidase (GPx-1, GPx-4) and thioredoxin reductase (TrxR-1) in brain structures. SOD-2 was increased in the cortex and striatum, while TrxR-2 increased in the cerebral cortex. The increase in mRNA expression of antioxidant enzymes was positively correlated with the Nrf-2 transcription in the cortex and hippocampus. Hypothyroidism caused oxidative stress, namely an increase in lipid peroxidation and reactive oxygen species levels in the hippocampus and striatum, and a decrease in nonprotein thiols in the cerebral cortex. Diphenyl diselenide was effective in reducing brain oxidative stress and normalizing most of the changes observed in gene expression of antioxidant enzymes. CONCLUSION: The present work corroborates and extends that hypothyroidism disrupts antioxidant enzyme gene expression and causes oxidative stress in the brain. Furthermore, diphenyl diselenide may be considered a promising molecule to counteract these effects in a hypothyroidism state.
Asunto(s)
Antioxidantes/metabolismo , Derivados del Benceno/administración & dosificación , Corteza Cerebral/enzimología , Cuerpo Calloso/enzimología , Hipocampo/enzimología , Hipotiroidismo/dietoterapia , Compuestos de Organoselenio/administración & dosificación , Animales , Peso Corporal , Modelos Animales de Enfermedad , Femenino , Hipotiroidismo/enzimología , Peroxidación de Lípido/fisiología , Metimazol , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/fisiología , ARN Mensajero/metabolismo , Distribución Aleatoria , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/metabolismoRESUMEN
Organophosphates (OPs), which are widely used as pesticides, are acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. The inactivation of AChE results in the accumulation of acetylcholine at cholinergic receptor sites, causing a cholinergic crisis that can lead to death. The classical treatment for OP poisoning is administration of oximes, but these compounds are ineffective in some cases. Here we determined whether the new compound isatin-3-N(4)-benzilthiosemicarbazone (IBTC), which in our previous study proved to be an antioxidant and antiatherogenic molecule, could protect and reactivate AChE and BChE. Toxicity of IBTC after subcutaneous injection in mice was measured using assays for oxidized diclorofluoresceine (DCF), thiobarbituric acid reactive substances (TBARS), non-protein thiol (NPSH) levels, and catalase (CAT), sodium potassium (Na(+)/K(+)) ATPase, delta-aminolevulinic acid dehydratase (ALA-D), and glutathione peroxidases (GPx) enzyme activities. The cytotoxicity was evaluated and the enzymatic activity of cholinesterase was measured in human blood samples. Molecular docking was used to predict the mechanism of IBTC interactions with the AChE active site. We found that IBTC did not increase the amount of DCF-RS or TBARS, did not reduce NPSH levels, and did not increase CAT, (Na(+)/K(+)) ATPase, ALA-D, or GPx activities. IBTC protected and reactivated both AChE and BChE activities. Molecular docking predicted that IBTC is positioned at the peripheral anionic site and in the acyl binding pocket of AChE and can interact with methamidophos, releasing the enzyme's active site. Our results suggest that IBTC, besides being an antioxidant and a promising antiatherogenic agent, is a non-toxic molecule for methamidophos poisoning treatment.
Asunto(s)
Inhibidores de la Colinesterasa/toxicidad , Reactivadores de la Colinesterasa/farmacología , Insecticidas/toxicidad , Isatina/análogos & derivados , Isatina/farmacología , Compuestos Organotiofosforados/toxicidad , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Colinesterasas/metabolismo , Humanos , Linfocitos , Masculino , Ratones , Simulación del Acoplamiento Molecular , ATPasa Intercambiadora de Sodio-Potasio/metabolismoRESUMEN
AIMS: Several lines of evidence support the hypothesis that the oxidation of low density lipoprotein (LDL) may play a crucial role in the initiation and progression of atherosclerosis. Various studies have shown a positive effect of antioxidant compounds on oxidative modification of LDL and atherogenesis. In view of this, we have investigated the possible antioxidant activity of two new oximes against Cu2+- induced LDL and serum oxidation. Oximes are used in organophosphate (OP) poisoning acting by restoring the cholinesterase function. However, their antioxidant capacities are not well understood and poorly studied. MAIN METHODS: We measured, in a Cu2+-induced oxidation, the conjugated dienes formation in serum and LDL and the loss of tryptophan fluorescence as well as the TBARS formation in the LDL. KEY FINDINGS: Our results showed that both oximes act as antioxidant and they are able to prevent LDL oxidation in a concentration-dependent manner. When human LDL or serum was oxidized by Cu2+, our oximes showed a significant increase in the lag phase of conjugated dienes and a significant decrease in the thiobarbituric acid reactive substances production. Moreover, oximes protected tryptophan residues of ApoB-100 in the early stage of LDL oxidation and during the subsequent propagation phase. SIGNIFICANCE: These results indicated for the first time that oximes have a potential antioxidant activity and they could act in the prevention of LDL and serum oxidation. Thus, we speculated that our oximes could act as antiatherogenic compounds besides their well described role as antidote for organophosphate poisoning.
Asunto(s)
Lipoproteínas LDL/sangre , Oximas/farmacología , Sulfato de Cobre/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Técnicas In Vitro , Lipoproteínas LDL/química , Estructura Molecular , Intoxicación por Organofosfatos , Oxidación-Reducción , Oximas/química , Intoxicación/sangre , Intoxicación/tratamiento farmacológico , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismoRESUMEN
Selenium compounds, like diphenyl diselenide (Ph(2)Se(2)), possess glutathione peroxidase (GSHPx)-like activities and other antioxidant properties. The aim of this study was to evaluate the effects of a long-term oral supplementation with Ph(2)Se(2) on various toxicological parameters in rabbits. Adult New Zealand male rabbits were divided into four groups: Group I served as control; Groups II, III and IV received 0.3, 3.0 and 30 p.p.m. of Ph(2)Se(2) pulverized in the chow for 8 months. A number of toxicological parameters were examined in liver, kidney, cerebral cortex and hippocampus, such as delta-aminolaevulinic acid dehydratase (delta-ALA-D), catalase (CAT), GSHPx activities, non-protein thiol (-SH), lipid peroxidation and ascorbic acid levels. The results indicated that supplementation 30 p.p.m. Ph(2)Se(2 )significantly increased delta-ALA-D activity in liver and in cerebral cortex. Non-protein -SH levels were significantly increased in liver but not in kidney, cerebral cortex and hippocampus of rabbits. Ascorbic acid content was significantly lower in the liver and cerebral cortex after supplementation with 30 p.p.m. Ph(2)Se(2). Conversely, no alterations in GSHPx and CAT activities, nor in thiobarbituric acid reactive substances levels were observed in rabbit tissues. These results indicate that oral supplementation with Ph(2)Se(2) is relatively secure in rabbits after 8 months of exposure. The findings encourage further experiments on the potential therapeutic effects of such compound.
Asunto(s)
Antioxidantes/efectos adversos , Derivados del Benceno/efectos adversos , Encéfalo/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Compuestos de Organoselenio/efectos adversos , Animales , Antioxidantes/farmacocinética , Ácido Ascórbico/metabolismo , Derivados del Benceno/farmacocinética , Catalasa/metabolismo , Relación Dosis-Respuesta a Droga , Glutatión Peroxidasa/metabolismo , Peroxidación de Lípido/fisiología , Masculino , Compuestos de Organoselenio/farmacocinética , Porfobilinógeno Sintasa/metabolismo , Conejos , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Factores de TiempoRESUMEN
The concept that selenium-containing molecules may be better antioxidants than classical antioxidants, has led to the design of synthetic organoselenium compounds. The present study was conducted to evaluate the potential toxicity of long time oral exposure to diphenyl diselenide (PhSe)2 in rabbits. Male adult New Zealand rabbits were divided into four groups, group I served as control; groups II, III and IV received 0.3, 3.0 and 30 ppm of (PhSe)2 pulverized in the chow for 8 months. A number of parameters were examined in blood as indicators of toxicity, including delta-aminolevulinate dehydratase (delta-ALA-D), catalase, glutathione peroxidase (GPx), alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea, creatinine, TBARS, non-protein-SH, ascorbic acid and selenium. The results demonstrated that 6 and 8 months of 30 ppm (PhSe)2 intake caused a significant increase in blood delta-ALA-D activity. Erythrocyte non-protein thiol levels were significantly increased after 2 months of 30 ppm (PhSe)2 intake and then return to control levels after prolonged periods of intake. Ingestion of 3.0 ppm of (PhSe)2 for 8 months significantly increased catalase activity in erythrocytes. Conversely, no alterations in GPx, ALT, AST, TBARS and selenium levels were observed in rabbit serum, conversely, selenium levels in peri-renal adipose tissue were significantly increased after 8 months of 30 ppm (PhSe)2 intake, indicating its great lipophylicity. The present results suggest that diphenyl diselenide was not hepato- or renotoxic for rabbits, but caused some biochemical alterations that can be related to some pro-oxidant activity of the compound (particularly the reduction in Vitamin C).