Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 11(35): 21857-21861, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35478789

RESUMEN

A new immobilization strategy using compartmentalized nanoreactors is herein reported for two biocatalytic processes: (1) N-acetylneuraminate lyase (NAL) is internalized in NAL-c-CLEnAs and used in a continuous flow aldol condensation of N-acetyl-d-mannosamine with sodium pyruvate to N-acetylneuraminic acid; (2) two hydroxysteroid dehydrogenases (HSDH) 7α- and 7ß-HSDH are incorporated in c-CLEnAs and used in a two-step cascade batch synthesis of ursodeoxycholic acid (UDCA). The versatile use of c-CLEnA demonstrates that this immobilization methodology is a valuable addition to the toolbox of synthetic chemists.

2.
Chem Sci ; 11(10): 2765-2769, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-34084336

RESUMEN

Nano-sized enzyme aggregates, which preserve their catalytic activity are of great interest for flow processes, as these catalytic species show minimal diffusional issues, and are still sizeable enough to be effectively separated from the formed product. The realization of such catalysts is however far from trivial. The stable formation of a micro-to millimeter-sized enzyme aggregate is feasible via the formation of a cross-linked enzyme aggregate (CLEA); however, such a process leads to a rather broad size distribution, which is not always compatible with microflow conditions. Here, we present the design of a compartmentalized templated CLEA (c-CLEnA), inside the nano-cavity of bowl-shaped polymer vesicles, coined stomatocytes. Due to the enzyme preorganization and concentration in the cavity, cross-linking could be performed with substantially lower amount of cross-linking agents, which was highly beneficial for the residual enzyme activity. Our methodology is generally applicable, as demonstrated by using two different cross-linkers (glutaraldehyde and genipin). Moreover, c-CLEnA nanoreactors were designed with Candida antarctica Lipase B (CalB) and Porcine Liver Esterase (PLE), as well as a mixture of glucose oxidase (GOx) and horseradish peroxidase (HRP). Interestingly, when genipin was used as cross-linker, all enzymes preserved their initial activity. Furthermore, as proof of principle, we demonstrated the successful implementation of different c-CLEnAs in a flow reactor in which the c-CLEnA nanoreactors retained their full catalytic function even after ten runs. Such a c-CLEnA nanoreactor represents a significant step forward in the area of in-flow biocatalysis.

3.
Beilstein J Org Chem ; 14: 716-733, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29719570

RESUMEN

Sustainable and environmentally benign production are key drivers for developments in the chemical industrial sector, as protecting our planet has become a significant element that should be considered for every industrial breakthrough or technological advancement. As a result, the concept of green chemistry has been recently defined to guide chemists towards minimizing any harmful outcome of chemical processes in either industry or research. Towards greener reactions, scientists have developed various approaches in order to decrease environmental risks while attaining chemical sustainability and elegancy. Utilizing catalytic nanoreactors for greener reactions, for facilitating multistep synthetic pathways in one-pot procedures, is imperative with far-reaching implications in the field. This review is focused on the applications of some of the most used nanoreactors in catalysis, namely: (polymer) vesicles, micelles, dendrimers and nanogels. The ability and efficiency of catalytic nanoreactors to carry out organic reactions in water, to perform cascade reaction and their ability to be recycled will be discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA