Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Br J Haematol ; 200(2): 170-174, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36263593

RESUMEN

Although a growing body of evidence demonstrates that altered mtDNA content (mtDNAc) has clinical implications in several types of solid tumours, its prognostic relevance in acute promyelocytic leukaemia (APL) patients remains largely unknown. Here, we show that patients with higher-than-normal mtDNAc had better outcomes regardless of tumour burden. These results were more evident in patients with low-risk of relapse. The multivariate Cox proportional hazard model demonstrated that high mtDNAc was independently associated with a decreased cumulative incidence of relapse. Altogether, our data highlights the possible role of mitochondrial metabolism in APL patients treated with ATRA.


Asunto(s)
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/genética , Tretinoina/uso terapéutico , ADN Mitocondrial/genética , Relevancia Clínica , Recurrencia Local de Neoplasia/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Resultado del Tratamiento
2.
Invest New Drugs ; 40(2): 438-452, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34837603

RESUMEN

Stathmin 1 (STMN1) is a microtubule-destabilizing protein highly expressed in hematological malignancies and involved in proliferation and differentiation. Although a previous study found that the PML-RARα fusion protein, which contributes to the pathophysiology of acute promyelocytic leukemia (APL), positively regulates STMN1 at the transcription and protein activity levels, little is known about the role of STMN1 in APL. In this study, we aimed to investigate the STMN1 expression levels and their associations with laboratory, clinical, and genomic data in APL patients. We also assessed the dynamics of STMN1 expression during myeloid cell differentiation and cell cycle progression, and the cellular effects of STMN1 silencing and pharmacological effects of microtubule-stabilizing drugs on APL cells. We found that STMN1 transcripts were significantly increased in samples from APL patients compared with those of healthy donors (all p < 0.05). However, this had no effect on clinical outcomes. STMN1 expression was associated with proliferation- and metabolism-related gene signatures in APL. Our data confirmed that STMN1 was highly expressed in early hematopoietic progenitors and reduced during cell differentiation, including the ATRA-induced granulocytic differentiation model. STMN1 phosphorylation was predominant in a pool of mitosis-enriched APL cells. In NB4 and NB4-R2 cells, STMN1 knockdown decreased autonomous cell growth (all p < 0.05) but did not impact ATRA-induced apoptosis and differentiation. Finally, treatment with paclitaxel (as a single agent or combined with ATRA) induced microtubule stabilization, resulting in mitotic catastrophe with repercussions for cell viability, even in ATRA-resistant APL cells. This study provides new insights into the STMN1 functions and microtubule dynamics in APL.


Asunto(s)
Leucemia Promielocítica Aguda , Diferenciación Celular , Proliferación Celular , Humanos , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patología , Mitosis , Proteínas de Fusión Oncogénica/genética , Paclitaxel , Estatmina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA