Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Oral Facial Pain Headache ; 34(2): 174-186, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32255583

RESUMEN

AIMS: To test for the possible antinociceptive effect of nifedipine in rodent models of acute and chronic neuropathic orofacial pain and the possible involvement of TRP- and NMDA-related processes in this effect. METHODS: Acute nociceptive behavior was induced by administering formalin, cinnamaldehyde, glutamate, capsaicin, or acidified saline to the upper lip or hypertonic saline to the cornea of Swiss mice. Acute nociceptive behavior was also induced by formalin injected into the TMJ or mustard oil injected into the masseter muscle of Wistar rats. The chronic pain model involved infraorbital nerve transection (IONX) in Wistar rats to induce mechanical hypersensitivity, which was assessed with von Frey hair stimulation of the upper lip. The effects of pretreatment with nifedipine or vehicle (control) were tested on the nociceptive behaviors. Docking experiments were also performed. Statistical analysis included one-way ANOVA followed by Tukey post hoc test and two-way ANOVA followed by Bonferroni post hoc test (statistical significance P < .05). RESULTS: Nifedipine produced significant antinociceptive effects in all of the acute nociceptive behaviors except that induced by capsaicin. The antinociceptive effects were attenuated by NMDA, TRPA1, or TRPM3 receptor antagonists. The IONX animals developed facial mechanical hypersensitivity, which was significantly reduced by nifedipine. The docking experiments suggested that nifedipine may interact with TRPM3 and NMDA receptors. CONCLUSION: The present study has provided novel findings in a variety of acute and chronic orofacial pain models showing that nifedipine, a selective inhibitor of L-type Ca2+ channels, can suppress orofacial nociceptive behavior through NMDA, TRPA1, and TRPM3 receptor systems.


Asunto(s)
Roedores , Canales Catiónicos TRPM , Analgésicos , Animales , Dolor Facial , Ratones , N-Metilaspartato , Nifedipino , Ratas , Ratas Wistar , Canal Catiónico TRPA1
2.
Inflammopharmacology ; 27(2): 261-269, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29460077

RESUMEN

This study aimed to evaluate the antinociceptive effect of sulphated polysaccharide from the marine algae Hypnea pseudomusciformis (PLS) using rodent models of orofacial pain. Acute pain was induced by formalin, capsaicin, cinnamaldehyde, acidified saline or glutamate (cutaneous modes) and hypertonic saline (corneal model). In one experiment, animals were pretreated with ruthenium red, glibenclamide, naloxone, L-NAME, methylene blue or ketamine to investigate the mechanism of antinociception. In another experiment, animals pretreated with PLS or saline were submitted to the temporomandibular joint formalin test. In yet another, animals were submitted to craniofacial pain induced by mustard oil. Motor activity was evaluated with the open-field test. Cytotoxicity and antioxidant activities were also assessed. Pre-treatment with PLS significantly reduced nociceptive behavior associated with acute pain. Antinociception was effectively reduced, but not inhibited, by ruthenium red and ketamine. L-NAME and glibenclamide enhanced the PLS effect. PLS antinociception was resistant to methylene blue, naloxone and heating. PLS presented no cytotoxicity or antioxidant properties. Our results confirm the potential pharmacological relevance of PLS as an inhibitor of orofacial nociception in acute pain probably mediated by glutamatergic, nitrergic, TRPs and K + ATP pathways.


Asunto(s)
Analgésicos/farmacología , Cianobacterias/clasificación , Dolor Facial/tratamiento farmacológico , Polisacáridos/farmacología , Dolor Agudo/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Nocicepción/efectos de los fármacos , Dimensión del Dolor/métodos , Ratas , Ratas Wistar , Roedores
3.
Zebrafish ; 15(6): 566-574, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30153094

RESUMEN

Zebrafish is an excellent model that can be utilized as an adjunct to current rodent models for studies of eye diseases because the anatomy and ultrastructural characterization of its cornea show much similarity with the human cornea. Therefore, we developed a behavioral model of corneal nociception using the adult zebrafish (Danio rerio). We analyzed the nociceptive effect of hypertonic saline (0.15-5.0 M sodium chloride [NaCl]) applied to the surface of the right or left cornea, on the animals' gender and locomotor activity through the open-field test. The behavioral model of corneal nociception was characterized by the antinociceptive effect of morphine (8.0 or 16 mg/kg; intraperitoneally [i.p.]), an opioid analgesic, and capsazepine, an antagonist of transient receptor potential vanilloid type 1 channels. We also tested whether the corneal antinociceptive effect of morphine could be modulated by naloxone, an opioid antagonist. Finally, we used the light and dark test to assess the anxiolytic effect of hypertonic saline (5.0 M NaCl; 5 µL) applied to the right or left cornea of the animals. As a result, hypertonic saline significantly increased (p < 0.01 vs. control) the corneal nociceptive behavior of adult zebrafish (D. rerio). Morphine significantly inhibited (p < 0.01 vs. 5.0 M NaCl) the hypertonic saline-induced corneal nociception and this effect was blocked by naloxone. Capsazepine (20 mg/kg; i.p.) significantly inhibited (p < 0.05 vs. control) the corneal nociception induced by hypertonic saline. Hypertonic saline, applied to the surface of the right or left cornea of the animals, induced nociception and did not cause a presumptive anxiolytic effect. Gender and site of application did not affect the profile of response to hypertonic saline. The results suggest that the adult zebrafish can also be used as a behavioral model of corneal nociception, with the advantages of significant homology with the human genome and low cost.


Asunto(s)
Analgésicos/farmacología , Córnea/efectos de los fármacos , Modelos Animales de Enfermedad , Nocicepción/fisiología , Solución Salina Hipertónica/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Locomoción , Nocicepción/efectos de los fármacos , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...