Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 767, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878205

RESUMEN

BACKGROUND: Esterases (EC 3.1.1.X) are enzymes that catalyze the hydrolysis ester bonds. These enzymes have large potential for diverse applications in fine industries, particularly in pharmaceuticals, cosmetics, and bioethanol production. METHODS AND RESULTS: In this study, a gene encoding an esterase from Thermobifida fusca YX (TfEst) was successfully cloned, and its product was overexpressed in Escherichia coli and purified using affinity chromatography. The TfEst kinetic assay revealed catalytic efficiencies of 0.58 s-1 mM-1, 1.09 s-1 mM-1, and 0.062 s-1 mM-1 against p-Nitrophenyl acetate, p-Nitrophenyl butyrate, and 1-naphthyl acetate substrates, respectively. Furthermore, TfEst also exhibited activity in a pH range from 6.0 to 10.0, with maximum activity at pH 8.0. The enzyme demonstrated a half-life of 20 min at 70 °C. Notably, TfEst displayed acetyl xylan esterase activity as evidenced by the acetylated xylan assay. The structural prediction of TfEst using AlphaFold indicated that has an α/ß-hydrolase fold, which is consistent with other esterases. CONCLUSIONS: The enzyme stability over a broad pH range and its activity at elevated temperatures make it an appealing candidate for industrial processes. Overall, TfEst emerges as a promising enzymatic tool with significant implications for the advancement of biotechnology and biofuels industries.


Asunto(s)
Acetilesterasa , Esterasas , Thermobifida , Acetilesterasa/metabolismo , Acetilesterasa/genética , Acetilesterasa/química , Concentración de Iones de Hidrógeno , Cinética , Especificidad por Sustrato , Thermobifida/enzimología , Thermobifida/genética , Esterasas/metabolismo , Esterasas/genética , Esterasas/química , Estabilidad de Enzimas , Temperatura , Escherichia coli/genética , Escherichia coli/metabolismo , Clonación Molecular/métodos , Hidrólisis , Xilanos/metabolismo , Butiratos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Nitrofenoles
2.
Int J Biol Macromol ; 167: 93-100, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33259843

RESUMEN

Glutathione peroxidases (GPx) are a family of enzymes with the ability to reduce organic and inorganic hydroperoxides to the corresponding alcohols using glutathione or thioredoxin as an electron donor. Here, we report the functional and structural characterization of a GPx identified in Trichoderma reesei (TrGPx). TrGPx was recombinantly expressed in a bacterial host and purified using affinity. Using a thioredoxin coupled assay, TrGPx exhibited activity of 28 U and 12.5 U in the presence of the substrates H2O2 and t-BOOH, respectively, and no activity was observed when glutathione was used. These results indicated that TrGPx is a thioredoxin peroxidase and hydrolyses H2O2 better than t-BOOH. TrGPx kinetic parameters using a pyrogallol assay resulted at Kmapp = 11.7 mM, Vmaxapp = 10.9 IU/µg TrGPx, kcat = 19 s-1 and a catalytic efficiency of 1.6 mM-1 s-1 to H2O2 as substrate. Besides that, TrGPx demonstrated an optimum pH ranging from 9.0-12.0 and a half-life of 36 min at 80 °C. TrGPx 3D-structure was obtained in a reduced state and non-catalytic conformation. The overall fold is similar to the other phospholipid-hydroperoxide glutathione peroxidases. These data contribute to understand the antioxidant mechanism in fungi and provide information for using antioxidant enzymes in biotechnological applications.


Asunto(s)
Hypocreales/enzimología , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Secuencia de Aminoácidos , Antioxidantes/química , Antioxidantes/farmacología , Fraccionamiento Químico , Clonación Molecular , Activación Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expresión Génica , Glutatión Peroxidasa/química , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Concentración de Iones de Hidrógeno , Hypocreales/genética , Modelos Moleculares , Peroxirredoxinas/genética , Peroxirredoxinas/aislamiento & purificación , Conformación Proteica , Relación Estructura-Actividad , Temperatura
3.
ACS Infect Dis ; 6(8): 2192-2201, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32603583

RESUMEN

Dihydrofolate reductase (DHFR), a key enzyme involved in folate metabolism, is a widely explored target in the treatment of cancer, immune diseases, bacteria, and protozoa infections. Although several antifolates have proved successful in the treatment of infectious diseases, they have been underexplored to combat tuberculosis, despite the essentiality of M. tuberculosis DHFR (MtDHFR). Herein, we describe an integrated fragment-based drug discovery approach to target MtDHFR that has identified hits with scaffolds not yet explored in any previous drug design campaign for this enzyme. The application of a SAR by catalog strategy of an in house library for one of the identified fragments has led to a series of molecules that bind to MtDHFR with low micromolar affinities. Crystal structures of MtDHFR in complex with compounds of this series demonstrated a novel binding mode that considerably differs from other DHFR antifolates, thus opening perspectives for the development of relevant MtDHFR inhibitors.


Asunto(s)
Antagonistas del Ácido Fólico , Mycobacterium tuberculosis , Tuberculosis , Diseño de Fármacos , Antagonistas del Ácido Fólico/farmacología , Humanos , Tetrahidrofolato Deshidrogenasa/genética , Tuberculosis/tratamiento farmacológico
4.
Int J Biol Macromol ; 129: 653-658, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30771398

RESUMEN

Epoxide hydrolases (EHs) are enzymes involved in the metabolism of endogenous and exogenous epoxides, and the development of EH inhibitors has important applications in the medicine. In humans, EH inhibitors are being tested in the treatment of cardiovascular diseases and show potent anti-inflammatory effects. EH inhibitors are also considerate promising molecules against infectious diseases. EHs are functionally very well studied, but only a few members have its three-dimensional structures characterized. Recently, a new EH from the filamentous fungi Trichoderma reseei (TrEH) was reported, and a series of urea or amide-based inhibitors were identified. In this study, we describe the crystallographic structures of TrEH in complex with five different urea or amide-based inhibitors with resolutions ranging from 2.6 to 1.7 Å. The analysis of these structures reveals the molecular basis of the inhibition of these compounds. We could also observe that these inhibitors occupy the whole extension of the active site groove and only a few conformational changes are involved. Understanding the structural basis EH interactions with different inhibitors might substantially contribute for the study of fungal metabolism and in the development of novel and more efficient antifungal drugs against pathogenic Trichoderma species.


Asunto(s)
Amidas/química , Amidas/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Trichoderma/enzimología , Urea/química , Urea/farmacología , Amidas/metabolismo , Dominio Catalítico/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/química , Epóxido Hidrolasas/metabolismo , Concentración 50 Inhibidora , Modelos Moleculares , Urea/metabolismo
5.
Mol Biol Rep ; 46(1): 371-379, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30426381

RESUMEN

Epoxide hydrolases (EHs) are present in all living organisms and catalyze the hydrolysis of epoxides to the corresponding vicinal diols. EH are involved in the metabolism of endogenous and exogenous epoxides, and thus have application in pharmacology and biotechnology. In this work, we describe the substrates and inhibitors selectivity of an epoxide hydrolase recently cloned from the filamentous fungus Trichoderma reesei QM9414 (TrEH). We also studied the TrEH urea-based inhibitors effects in the fungal growth. TrEH showed high activity on radioative and fluorescent surrogate and natural substrates, especially epoxides from docosahexaenoic acid. Using a fluorescent surrogate substrate, potent inhibitors of TrEH were identified. Interestingly, one of the best compounds inhibit up to 60% of T. reesei growth, indicating an endogenous role for TrEH. These data make TrEH very attractive for future studies about fungal metabolism of fatty acids and possible development of novel drugs for human diseases.


Asunto(s)
Epóxido Hidrolasas/fisiología , Trichoderma/metabolismo , Catálisis , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/metabolismo , Compuestos Epoxi/metabolismo , Ácidos Grasos/fisiología , Hidrólisis , Trichoderma/fisiología
6.
Biochim Biophys Acta Proteins Proteom ; 1865(8): 1039-1045, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28502798

RESUMEN

Epoxide hydrolases (EHs) are enzymes that have high biotechnological interest for the fine and transformation industry. Several of these enzymes have enantioselectivity, which allows their application in the separation of enantiomeric mixtures of epoxide substrates. Although two different families of EHs have been described, those that have the α/ß-hidrolase fold are the most explored for biotechnological purpose. These enzymes are functionally very well studied, but only few members have three-dimensional structures characterised. Recently, a new EH from the filamentous fungi Trichoderma reseei (TrEH) has been discovered and functionally studied. This enzyme does not have high homology to any other EH structure and have an enatiopreference for (S)-(-) isomers. Herein we described the crystallographic structure of TrEH at 1.7Å resolution, which reveals features of its tertiary structure and active site. TrEH has a similar fold to the other soluble epoxide hydrolases and has the two characteristic hydrolase and cap domains. The enzyme is predominantly monomeric in solution and has also been crystallised as a monomer in the asymmetric unit. Although the catalytic residues are conserved, several other residues of the catalytic groove are not, and might be involved in the specificity for substrates and in the enantioselectivy of this enzyme. In addition, the determination of the crystallographic structure of TrEH might contribute to the rational site direct mutagenesis to generate an even more stable enzyme with higher efficiency to be used in biotechnological purposes.


Asunto(s)
Epóxido Hidrolasas/química , Epóxido Hidrolasas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Trichoderma/metabolismo , Dominio Catalítico/fisiología , Cristalografía por Rayos X/métodos , Modelos Moleculares , Mutagénesis Sitio-Dirigida/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA