Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 181, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285209

RESUMEN

Bacillus thuringiensis (Bt) produces crystals composed mainly of Cry pesticidal proteins with insecticidal activity against pests but are highly susceptible to degradation by abiotic factors. In this sense, encapsulation techniques are designed to improve their performance and lifetime. However, the effects of polymeric matrix encapsulation such as gum arabic and maltodextrin by spray-dryer in the mechanisms of action of Bt kurstaki and Bt aizawai are unknown. We analyzed crystal solubilization, protoxin activation, and receptor binding after microencapsulation and compared them with commercial non-encapsulated products. Microencapsulation did not alter protein crystal solubilization, providing 130 kDa (Cry1 protoxin) and 70 kDa (Cry2 protoxin). Activation with trypsin, chymotrypsin, and larval midgut juice was analyzed, showing that this step is highly efficient, and the protoxins were cleaved producing similar ~ 55 to 65 kDa activated proteins for both formulations. Binding assays with brush border membrane vesicles of Manduca sexta and Spodoptera frugiperda larvae provided a similar binding for both formulations. LC50 bioassays showed no significant differences between treatments but the microencapsulated treatment provided higher mortality against S. frugiperda when subjected to UV radiation. Microencapsulation did not affect the mechanism of action of Cry pesticidal proteins while enhancing protection against UV radiation. These data will contribute to the development of more efficient Bt biopesticide formulations. KEY POINTS: • Microencapsulation did not affect the mechanisms of action of Cry pesticidal proteins produced by Bt. • Microencapsulation provided protection against UV radiation for Bt-based biopesticides. • The study's findings can contribute to the development of more efficient Bt biopesticide formulations.


Asunto(s)
Bacillus thuringiensis , Plaguicidas , Polisacáridos , Animales , Plaguicidas/farmacología , Goma Arábiga , Agentes de Control Biológico , Larva , Control de Plagas
2.
Toxicol In Vitro ; 95: 105747, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38043627

RESUMEN

The incidence of viruses such as Zika, Dengue, and Chikungunya affects human health worldwide, and insect repellents are recommended for individual protection. Formulations incorporating nanotechnology should be carefully assessed for toxicity, particularly regarding the security levels established for human health and the environment. This study evaluates the cytotoxicity of a repellent formulation containing zein nanoparticles (NP) loading geraniol (Ger) and icaridin (Ica) in three cell lines: NIH/3T3, HaCaT, and SIRC. To address formulation hazards, IC50 values were determined by MTT and Calcein-AM assays. In both NIH/3T3 and HaCaT, the IC50 values for NP + Ger + Ica formulation were around 0.2%. For risk assessment, cell viability was also determined after a single exposure and repeated exposure to the formulation. No evidence of cytotoxicity was observed for NP + Ger + Ica formulation-treated cells. The risk assessment for eye damage revealed cytotoxicity in SIRC cells when exposed to a 5% concentration, which may be attributed to ocular geraniol toxicity, because zein nanoparticles alone did not exhibit any signs of toxicity. Cell internalization indicated low uptake in NIH/3T3 and HaCaT cells. Phenotypic profiling resulted in similar phenotypes for untreated cells and cells exposed to NP + Ger + Ica formulation. The toxicological profile outlined by the multiparametric and orthogonal approach suggests that the NP + Ger + Ica formulation poses no significant risk to the topical application under the tested conditions. Adopting an orthogonal approach brings robustness to our findings.


Asunto(s)
Repelentes de Insectos , Nanopartículas , Zeína , Infección por el Virus Zika , Virus Zika , Humanos , Repelentes de Insectos/toxicidad , Zeína/toxicidad , Monoterpenos Acíclicos/toxicidad , Nanopartículas/toxicidad
3.
J Hazard Mater ; 417: 126004, 2021 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-33992010

RESUMEN

Nanoencapsulation of biopesticides is an important strategy to increase the efficiency of these compounds, reducing losses and adverse effects on non-target organisms. This study describes the preparation and characterisation of zein nanoparticles containing the botanical compounds limonene and carvacrol, responsive to proteolytic enzymes present in the insects guts. The spherical nanoparticles, prepared by the anti-solvent precipitation method, presented in the nanoparticle tracking analysis (NTA) a concentration of 4.7 × 1012 ± 1.3 × 1011 particles.mL-1 and an average size of 125 ± 2 nm. The formulations showed stability over time, in addition to not being phytotoxic to Phaseolus vulgaris plants. In vivo tests demonstrated that formulations of zein nanoparticles containing botanical compounds showed higher mortality to Spodoptera frugiperda larvae. In addition, the FTIC probe (fluorescein isothiocyanate) showed wide distribution in the larvae midgut, as well as being identified in the feces. The trypsin enzyme, as well as the enzymatic extract from insects midgut, was effective in the degradation of nanoparticles containing the mixture of botanical compounds, significantly reducing the concentration of nanoparticles and the changes in size distribution. The zein degradation was confirmed by the disappearance of the protein band in the electrophoresis gel, by the formation of the lower molecular weight fragments and also by the greater release of FTIC after enzymes incubation. In this context, the synthesis of responsive nanoparticles has great potential for application in pest management, increasing the selectivity and specificity of the system and contributing to a more sustainable agriculture.


Asunto(s)
Nanopartículas , Plaguicidas , Zeína , Agricultura , Portadores de Fármacos , Composición de Medicamentos , Nanopartículas/toxicidad , Tamaño de la Partícula
4.
Ecotoxicology ; 30(4): 733-750, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33821358

RESUMEN

Atrazine was banned by the European Union in 2004, but is still used in many countries. Agricultural research employing nanotechnology has been developed in order to reduce the impacts to the environment and nontarget organisms. Nanoatrazine was developed as a carrier system and have been considered efficient in weed control. However, its toxicity must be verified with nontarget organisms. In this context, the aim of the present study was to investigate ecotoxicological effects of solid lipid nanoparticles (empty and loaded with atrazine) and atrazine on Chironomus sancticaroli larvae, evaluating the endpoints: mortality, mentum deformity, development rate and biochemical biomarkers. The contaminant concentrations used were 2, 470, 950, and 1900 µg L-1 in acute (96 h) and 2 µg L-1 in subchronic (10 days) bioassays. An environmentally relevant concentration of atrazine (2 µg L-1) presented toxic and lethal effects towards the larvae. The nanoparticles loaded with atrazine showed toxic effects similar to free atrazine, causing mortality and biochemical alterations on the larvae. The nanoparticle without atrazine caused biochemical alterations and mortality, indicating a possible toxic effect of the formulation on the larvae. In the acute bioassay, most concentrations of nanoparticles loaded with atrazine were not dose dependent for the endpoint mortality. Only the atrazine concentration of 470 µg L-1 was statistically significant to endpoint mentum deformity. The atrazine and nanoparticles (with and without atrazine) did not affect larval development. The results indicate that Chironomus sancticaroli was sensitive to monitor nanoatrazine, presenting potential to be used in studies of toxicity of nanopesticides.


Asunto(s)
Atrazina , Chironomidae , Herbicidas , Contaminantes Químicos del Agua , Animales , Atrazina/toxicidad , Ecotoxicología , Larva , Contaminantes Químicos del Agua/toxicidad , Control de Malezas
5.
J Nanobiotechnology ; 18(1): 125, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32891146

RESUMEN

Incidents of viral outbreaks have increased at an alarming rate over the past decades. The most recent human coronavirus known as COVID-19 (SARS-CoV-2) has already spread around the world and shown R0 values from 2.2 to 2.68. However, the ratio between mortality and number of infections seems to be lower in this case in comparison to other human coronaviruses (such as severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV)). These outbreaks have tested the limits of healthcare systems and have posed serious questions about management using conventional therapies and diagnostic tools. In this regard, the use of nanotechnology offers new opportunities for the development of novel strategies in terms of prevention, diagnosis and treatment of COVID-19 and other viral infections. In this review, we discuss the use of nanotechnology for COVID-19 virus management by the development of nano-based materials, such as disinfectants, personal protective equipment, diagnostic systems and nanocarrier systems, for treatments and vaccine development, as well as the challenges and drawbacks that need addressing.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus , Nanotecnología/métodos , Pandemias , Neumonía Viral , Antivirales/administración & dosificación , Betacoronavirus/aislamiento & purificación , COVID-19 , Prueba de COVID-19 , Vacunas contra la COVID-19 , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/terapia , Desinfección/métodos , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Humanos , Nanoestructuras/administración & dosificación , Equipo de Protección Personal , Neumonía Viral/diagnóstico , Neumonía Viral/epidemiología , Neumonía Viral/terapia , SARS-CoV-2 , Vacunas Virales/administración & dosificación
6.
Artículo en Inglés | MEDLINE | ID: mdl-32154233

RESUMEN

Arboviruses such as yellow fever, dengue, chikungunya and zika are transmitted mainly by the mosquito vector Aedes aegypti. Especially in the tropics, inefficacy of mosquito control causes arboviruses outbreaks every year, affecting the general population with debilitating effects in infected individuals. Several strategies have been tried to control the proliferation of A. aegypti using physical, biological, and chemical control measures. Other methods are currently under research and development, amongst which the use of nanotechnology has attracted a lot of attention of the researchers in relation to the production of more effective repellents and larvicides with less toxicity, and development of rapid sensors for the detection of virus infections. In this review, the utilization of nano-based formulations on control and diagnosis of mosquito-borne diseases were discussed. We also emphasizes the need for future research for broad commercialization of nano-based formulations in world market aiming a positive impact on public health.

7.
Sci Total Environ ; 700: 134868, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31706089

RESUMEN

Atrazine is a pre- and post-emergence herbicide used to control weeds in many crops. It was introduced in the late 1950s, but its use has been controversial because of its high potential for environmental contamination. In agriculture, the implementation of sustainable practices can help in reducing the adverse effects atrazine. This review addresses aspects related to the impacts of atrazine in the environment, with focus on its effects on aquatic species, as well as the potential use of nanoencapsulation to decrease the impacts of atrazine. The application of atrazine leads to its dispersal beyond the immediate area, with possible contamination of soils, sediments, plantations, pastures, public supply reservoirs, groundwater, streams, lakes, rivers, seas, and even glaciers. In aquatic ecosystems, atrazine can alter the biota, consequently interfering in the food chains of many species, including benthic organisms. Nanoformulations loaded with atrazine have been developed as a way to reduce the adverse impacts of this herbicide in aquatic and terrestrial ecosystems. Ecotoxicological bioassays have shown that this nanoformulations can improve the targeted delivery of the active ingredient, resulting in decreased dosages to obtain the same effects as conventional formulations. However, more detailed analyses of the ecotoxicological potential of atrazine-based nanoherbicides need to be performed with representative species of different ecosystems.


Asunto(s)
Atrazina/toxicidad , Herbicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Bioensayo , Biota , Ecosistema , Cadena Alimentaria , Agua Subterránea , Nanotecnología , Ríos
8.
J Agric Food Chem ; 66(21): 5325-5334, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29733587

RESUMEN

The nanoencapsulation of botanical compounds (such as geraniol) is an important strategy that can be used to increase the stability and efficiency of these substances in integrated pest management. In this study, chitosan/gum arabic nanoparticles containing geraniol were prepared and characterized. In addition, evaluation was made of the biological activity of geraniol encapsulated in chitosan/gum arabic nanoparticles toward whitefly ( Bemisia tabaci). The optimized formulation showed a high encapsulation efficiency (>90%) and remained stable for about 120 days. The formulation protected the geraniol against degradation by UV radiation, and the in vitro release was according to a diffusion mechanism that was influenced by temperature. An attraction effect was observed for Bemisia tabaci, indicating the potential of this type of system for use in pest management, especially in trap devices.


Asunto(s)
Agricultura/métodos , Quitosano , Goma Arábiga , Control de Insectos/métodos , Nanopartículas/química , Terpenos/administración & dosificación , Monoterpenos Acíclicos , Animales , Difusión , Estabilidad de Medicamentos , Hemípteros , Control de Insectos/instrumentación , Insecticidas/administración & dosificación
9.
Artículo en Inglés | MEDLINE | ID: mdl-26633987

RESUMEN

We confirmed the ability of the triterpenoid betulin to protect against neurotoxicity caused by Bothrops jararacussu snake venom in vitro in mouse isolated phrenic nerve-diaphragm (PND) preparations and examined its capability of in vivo protection using the rat external popliteal/sciatic nerve-tibialis anterior (EPSTA) preparation. Venom caused complete, irreversible blockade in PND (40 µg/mL), but only partial blockade (~30%) in EPSTA (3.6 mg/kg, i.m.) after 120 min. In PND, preincubation of venom with commercial bothropic antivenom (CBA) attenuated the venom-induced blockade, and, in EPSTA, CBA given i.v. 15 min after venom also attenuated the blockade (by ~70% in both preparations). Preincubation of venom with betulin (200 µg/mL) markedly attenuated the venom-induced blockade in PND; similarly, a single dose of betulin (20 mg, i.p., 15 min after venom) virtually abolished the venom-induced decrease in contractility. Plasma creatine kinase activity was significantly elevated 120 min after venom injection in the EPSTA but was attenuated by CBA and betulin. These results indicate that betulin given i.p. has a similar efficacy as CBA given i.v. in attenuating the neuromuscular effects of B. jararacussu venom in vivo and could be a useful complementary measure to antivenom therapy for treating snakebite.

10.
Sci Rep ; 5: 13809, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26346969

RESUMEN

Carbendazim (MBC) (methyl-2-benzimidazole carbamate) and tebuconazole (TBZ) ((RS)-1-(4-chlorophenyl)-4,4-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)pentan-3-ol) are widely used in agriculture for the prevention and control of fungal diseases. Solid lipid nanoparticles and polymeric nanocapsules are carrier systems that offer advantages including changes in the release profiles of bioactive compounds and their transfer to the site of action, reduced losses due to leaching or degradation, and decreased toxicity in the environment and humans. The objective of this study was to prepare these two types of nanoparticle as carrier systems for a combination of TBZ and MBC, and then investigate the release profiles of the fungicides as well as the stabilities and cytotoxicities of the formulations. Both nanoparticle systems presented high association efficiency (>99%), indicating good interaction between the fungicides and the nanoparticles. The release profiles of MBC and TBZ were modified when the compounds were loaded in the nanoparticles, and cytotoxicity assays showed that encapsulation of the fungicides decreased their toxicity. These fungicide systems offer new options for the treatment and prevention of fungal diseases in plants.


Asunto(s)
Agricultura , Bencimidazoles/administración & dosificación , Carbamatos/administración & dosificación , Preparaciones de Acción Retardada , Fungicidas Industriales/administración & dosificación , Lípidos , Nanopartículas , Polímeros , Triazoles/administración & dosificación , Química Farmacéutica , Estabilidad de Medicamentos , Modelos Teóricos , Nanocápsulas , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA