Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 54
1.
Neuroscience ; 551: 205-216, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38843988

Here, we explored the impact of prolonged environmental enrichment (EE) on behavioral, neurochemical, and epigenetic changes in the serotonin transporter gene in mice subjected to a two-hit schizophrenia model. The methodology involved administering the viral mimetic PolyI:C to neonatal Swiss mice as a first hit during postnatal days (PND) 5-7, or a sterile saline solution as a control. At PND21, mice were randomly assigned either to standard environment (SE) or EE housing conditions. Between PND35-44, the PolyI:C-treated group was submitted to various unpredictable stressors, constituting the second hit. Behavioral assessments were conducted on PND70, immediately after the final EE exposure. Following the completion of behavioral assessments, we evaluated the expression of proteins in the hippocampus that are indicative of microglial activation, such as Iba-1, as well as related to neurogenesis, including doublecortin (Dcx). We also performed methylation analysis on the serotonin transporter gene (Slc6a4) to investigate alterations in serotonin signaling. The findings revealed that EE for 50 days mitigated sensorimotor gating deficits and working memory impairments in two-hit mice and enhanced their locomotor and exploratory behaviors. EE also normalized the overexpression of hippocampal Iba-1 and increased the expression of hippocampal Dcx. Additionally, we observed hippocampal demethylation of the Slc6a4 gene in the EE-exposed two-hit group, indicating epigenetic reprogramming. These results contribute to the growing body of evidence supporting the protective effects of long-term EE in counteracting behavioral disruptions caused by the two-hit schizophrenia model, pointing to enhanced neurogenesis, diminished microglial activation, and epigenetic modifications of serotonergic pathways as underlying mechanisms.

2.
Pharmacol Biochem Behav ; 240: 173778, 2024 Jul.
Article En | MEDLINE | ID: mdl-38679081

Depression and anxiety disorders have their pathophysiologies linked to inflammation and oxidative stress. In this context, celecoxib (CLX) and etoricoxib (ETR) inhibit cyclooxygenase 2 (COX-2), an enzyme expressed by cells involved in the inflammatory process and found in the brain. Studies have been using CLX as a possible drug in the treatment of depression, although its mechanisms at the central nervous system level are not fully elucidated. In this study, the effects of CLX and ETR on behavioral, oxidative, and inflammatory changes induced by systemic exposure to Escherichia coli lipopolysaccharide (LPS) were evaluated in adult male swiss mice. For ten days, the animals received intraperitoneal injections of LPS at 0.5 mg/kg. From the sixth to the tenth day, one hour after LPS exposure, they were treated orally with CLX (15 mg/kg), ETR (10 mg/kg), or fluoxetine (FLU) (20 mg/kg). Twenty-four hours after the last oral administration, the animals underwent evaluation of locomotor activity (open field test), predictive tests for depressive-like behavior (forced swim and tail suspension tests), and anxiolytic-like effect (elevated plus maze and hole board tests). Subsequently, the hippocampus, prefrontal cortex and striatum were dissected for the measurement of oxidative and nitrosative parameters (malondialdehyde, nitrite, and glutathione) and quantification of pro-inflammatory cytokines (IL-1ß and IL-6). LPS induced depressive and anxious-like behavior, and treatment with CLX or ETR was able to reverse most of the behavioral changes. It was evidenced that nitrosative stress and the degree of lipid peroxidation induced by LPS were reduced in different brain areas after treatment with the drugs, as well as the endogenous defense system against free radicals was strengthened. CLX and ETR also significantly reduced LPS-induced cytokine levels. These data are expected to expand information on the role of inflammation in depression and anxiety and provide insights into possible mechanisms of COX-2 inhibitors in psychiatric disorders with a neurobiological basis in inflammation and oxidative stress.


Anxiety , Behavior, Animal , Celecoxib , Cyclooxygenase 2 Inhibitors , Depression , Lipopolysaccharides , Oxidative Stress , Animals , Male , Mice , Lipopolysaccharides/pharmacology , Oxidative Stress/drug effects , Cyclooxygenase 2 Inhibitors/pharmacology , Depression/drug therapy , Depression/chemically induced , Depression/metabolism , Anxiety/drug therapy , Anxiety/chemically induced , Behavior, Animal/drug effects , Celecoxib/pharmacology , Celecoxib/administration & dosage , Etoricoxib/pharmacology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/chemically induced , Inflammation/drug therapy , Inflammation/chemically induced , Inflammation/metabolism
3.
Article En | MEDLINE | ID: mdl-38433146

Chronic use of omeprazole has been linked to central effects alongside with the global concern of increasing appearance of neuropsychiatric disorders. This study aimed to identifying behavioral, inflammatory, and oxidative stress alterations after long-term administration of omeprazole. C57BL/6 mice were divided in groups: OME and Sham, each received either solutions of omeprazole or vehicle, administered for 28 days by gavage. Results observed in the omeprazole-treated mice: Decrease in the crossing parameter in the open field, no change in the motor performance assessed by rotarod, an immobility time reduction in the forced swimming test, improved percentage of correct alternances in the Ymaze and an exploration time of the novel object reduction in the novel object recognition. Furthermore, a reduced weight gain and hippocampal weight were observed. There was an increase in the cytokine IL1-ß levels in both prefrontal cortex (PFC) and serum, whereas TNF-α increased only in the PFC. Nitrite levels increased in the hippocampus (HP) and PFC, while malondialdehyde (MDA) and glutathione (GSH) levels decreased. These findings suggest that omeprazole improves depressive-like behavior and working memory, likely through the increase in nitrite and reduction in MDA levels in PFC and HP, whereas, the impairment of the recognition memory is more likely to be related to the reduced hippocampal weight. The diminished weight gain might be associated with the IL-1ß increased levels in the peripheral blood. Altogether, omeprazole showed to have the potential to impact at central level and inflammatory and oxidative parameters might exert a role between it.

4.
Naunyn Schmiedebergs Arch Pharmacol ; 395(9): 1029-1045, 2022 09.
Article En | MEDLINE | ID: mdl-35665831

We postulated that dimethyl fumarate (DMF) exerts neuroprotective effects against depression-like behaviors through astrocytes and microglia modulation. To ascertain our hypothesis and define the mechanistic pathways involved in effect of DMF on neuroinflammation, we used the depression model induced by chronic unpredictable mild stress (CUMS), in which, the mice were exposed to stressful events for 28 days and from the 14th day they received DMF in the doses of 50 and 100 mg/kg or fluoxetine 10 mg/kg or saline. On the 29th day, the animals were subjected to behavioral tests. Microglia (Iba1) and astrocyte (GFAP) marker expressions were evaluated by immunofluorescence analyzes and the cytokines TNF-α and IL-Iß by immunoenzymatic assay. In addition, computational target prediction, 3D protein structure prediction, and docking calculations were performed with monomethyl fumarate (DMF active metabolite) and the Keap1 and HCAR2 proteins, which suggested that these could be the probable targets related protective effects. CUMS induced anxiety- and depressive-like behaviors, cognitive deficit, decreased GFAP, and increased Iba1, TNF-α, and IL-Iß expression in the hippocampus. These alterations were reversed by DMF. Thus, it is suggested that one of the mechanisms involved in the antidepressant effect of DMF is neuroinflammatory suppression, through the signaling pathway HCAR2/Nrf2. However, more studies must be performed to better understand the molecular mechanisms of this drug.


Dimethyl Fumarate , Neuroprotective Agents , Animals , Astrocytes , Depression , Kelch-Like ECH-Associated Protein 1 , Mice , Microglia , NF-E2-Related Factor 2 , Receptors, G-Protein-Coupled , Signal Transduction , Tumor Necrosis Factor-alpha
5.
Metab Brain Dis ; 36(8): 2283-2297, 2021 12.
Article En | MEDLINE | ID: mdl-34491479

The current drug therapy for schizophrenia effectively treats acute psychosis and its recurrence; however, this mental disorder's cognitive and negative symptoms are still poorly controlled. Antipsychotics present important side effects, such as weight gain and extrapyramidal effects. The essential oil of Alpinia zerumbet (EOAZ) leaves presents potential antipsychotic properties that need further preclinical investigation. Here, we determined EAOZ effects in preventing and reversing schizophrenia-like symptoms (positive, negative, and cognitive) induced by ketamine (KET) repeated administration in mice and putative neurobiological mechanisms related to this effect. We conducted the behavioral evaluations of prepulse inhibition of the startle reflex (PPI), social interaction, and working memory (Y-maze task), and verified antioxidant (GSH, nitrite levels), anti-inflammatory [interleukin (IL)-6], and neurotrophic [brain-derived neurotrophic factor (BDNF)] effects of this oil in hippocampal tissue. The atypical antipsychotic olanzapine (OLZ) was used as standard drug therapy. EOAZ, similarly to OLZ, prevented and reversed most KET-induced schizophrenia-like behavioral alterations, i.e., sensorimotor gating deficits and social impairment. EOAZ had a modest effect on the prevention of KET-associated working memory deficit. Compared to OLZ, EOAZ showed a more favorable side effects profile, inducing less cataleptic and weight gain changes. EOAZ efficiently protected the hippocampus against KET-induced oxidative imbalance, IL-6 increments, and BDNF impairment. In conclusion, our data add more mechanistic evidence for the anti-schizophrenia effects of EOAZ, based on its antioxidant, anti-inflammatory, and BDNF up-regulating actions. The absence of significant side effects observed in current antipsychotic drug therapy seems to be an essential benefit of the oil.


Alpinia , Antipsychotic Agents , Oils, Volatile , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Brain-Derived Neurotrophic Factor , Mice , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Olanzapine
6.
Eur J Pharm Sci ; 162: 105824, 2021 Jul 01.
Article En | MEDLINE | ID: mdl-33798709

Stress is crucially related to the pathophysiology of mood disorders, including depression. Since the effectiveness and number of the current pharmacological options still presents significant limitations, research on new substances is paramount. In rodents, several findings have indicated that corticosterone administration induces the manifestation of behavioral and neurochemical aspects of depression. Recently, riparin III has shown antidepressant-like properties in trials performed on animal models. Thus, our goal was to investigate the effects of riparin III on behavioral tests, monoamines levels, oxidative stress and cytokines levels in chronic corticosterone-induced model of depression. To do this, female swiss mice were treated with subcutaneous administration of corticosterone for 22 days. In addition, for the last 10 days, riparin III or fluvoxamine were also administered per os in specific test groups. Control groups received subcutaneous saline injections or distilled water per os. At the end of the timeline, the animals were killed and their hippocampi, prefrontal cortex, and striatum dissected for neurochemical analysis. Brain changes following corticosterone administration were confirmed, and riparin III could reversed the most abnormal behavioral and neurochemical corticosterone-induced alterations. These results suggest the potential antioxidant, anti-inflammatory and antidepressant effects of riparin III after a chronic stress exposure.


Depression , Pharmaceutical Preparations , Animals , Behavior, Animal , Benzamides , Corticosterone , Depression/drug therapy , Disease Models, Animal , Female , Mice , Tyramine/analogs & derivatives
7.
Horm Behav ; 122: 104758, 2020 06.
Article En | MEDLINE | ID: mdl-32304685

BACKGROUND: Cognitive impairment is identified as one of the diagnostic criteria for major depressive disorder and can extensively affect the quality of life of patients. Based on these findings, this study aimed to investigate the possible effects of Riparin IV (Rip IV) on cognitive impairment induced by chronic administration of corticosterone in mice. METHODS: Female Swiss mice were divided into four groups: control (Control), corticosterone (Cort), Riparin IV (Cort + Rip IV), and Fluvoxamine (Cort + Flu). Three groups were administered corticosterone (20 mg/kg) subcutaneously during the 22-day study, while the control group received only vehicle. After the 14th day, the groups were administered medications: Riparin IV (Rip IV), fluvoxamine (Flu), or distilled water, by gavage, 1 h after the subcutaneous injections. After treatment, mice underwent behavioral testing, and brain areas were removed for oxidative stress and cytokine content assays. RESULTS: The results revealed that Cort-treated mice developed a cognitive impairment and exhibited a neuroinflammatory profile with an oxidative load and Th1/Th2 cytokine imbalance. Rip IV treatment significantly ameliorated the cognitive deficit induced by Cort and displayed a neuroprotective effect. CONCLUSION: The antidepressant-like ability of Rip IV treatment against chronic Cort-induced stress may be due to its potential to mitigate inflammatory damage and oxidative stress. The antioxidant and anti-inflammatory effect observed indicates Rip IV as a possible drug for antidepressant treatment of non-responsive patients with severe and cognitive symptoms.


Cognitive Dysfunction/prevention & control , Encephalitis/drug therapy , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Stress, Psychological/drug therapy , Tyramine/analogs & derivatives , Animals , Antioxidants/pharmacology , Behavior, Animal/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology , Chronic Disease , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Corticosterone/metabolism , Depression/drug therapy , Depression/etiology , Depression/metabolism , Encephalitis/complications , Encephalitis/metabolism , Female , Male , Mice , Stress, Psychological/complications , Stress, Psychological/metabolism , Stress, Psychological/psychology , Tyramine/pharmacology
8.
J Pharm Pharmacol ; 71(12): 1774-1783, 2019 Dec.
Article En | MEDLINE | ID: mdl-31608449

OBJECTIVES: Based on this, the central therapeutic effects of thymol were verified in the neurotrophic pathway. METHODS: Female swiss mice were divided into four groups: control, corticosterone (Cort), thymol (Cort + thymol) and fluvoxamine (Cort + Flu). The administration of corticosterone was used to induce depressive symptoms for 23 days. After the treatment, the animals were exposed the behavioural tests, such as forced swimming test, tail suspension test, sucrose preference test, light/dark test, social interaction test, Y-maze test, plus-maze test and hole-board test. The hippocampus was also removed, and BDNF was measured by ELISA and Western blot. KEY FINDINGS: As a result, thymol and fluvoxamine were able to reverse the depressive symptoms, as well as to improve the anxious frame. The anhedonic and short-term memory was restored with the treatment. In the neurochemical tests, both thymol and fluvoxamine restored BDNF levels, improving the depressive condition. CONCLUSIONS: This work opens up new investigations aiming at the use of this molecule as a therapeutic alternative for treating depression disorders.


Antidepressive Agents/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Depression/drug therapy , Thymol/pharmacology , Animals , Behavior, Animal/drug effects , Corticosterone/administration & dosage , Disease Models, Animal , Female , Fluvoxamine/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Maze Learning/drug effects , Mice , Up-Regulation/drug effects
9.
Pharmacol Biochem Behav ; 180: 44-51, 2019 05.
Article En | MEDLINE | ID: mdl-30904544

Mental disorders have a multifactorial etiology and stress presents as one of the causal factors. In depression, it is suggested that high cortisol concentration contributes directly to the pathology of this disease. Based on that, the study aims to evaluate the potential antidepressant effect of Riparin IV (Rip IV) in mice submitted to chronic stress model by repeated corticosterone administration. Female Swiss mice were selected into four groups: control (Ctrl), corticosterone (Cort), Riparin IV (Cort + Rip IV) and fluvoxamine (Cort + Flu). Three groups were administrated subcutaneously (SC) with corticosterone (20 mg/kg) during twenty-one days, while the control group received only vehicle. After the fourteenth day, groups were administrated tested drugs: Riparin IV, fluvoxamine or distilled water, by gavage, 1 h after subcutaneous injections. After the final treatment, animals were exposed to behavioral models such as forced swimming test (FST), tail suspension test (TST), open field test (OFT), elevated plus maze (EPM) and sucrose preference test (SPT). The hippocampus was also removed for the determination of BDNF levels. Corticosterone treatment altered all parameters in behavioral tests, leading to a depressive- and anxious-like behavior. Riparin IV and fluvoxamine exhibit antidepressant effect in FST, TST and SPT. In EPM and OFT, treatment displayed anxiolytic effect without alteration of locomotor activity. Corticosterone administration decreased BDNF levels and Riparin IV could reestablish them, indicating that its antidepressant effect may be related to ability to ameliorate hippocampal neurogenesis. These findings suggest that Riparin IV improves the depressive and anxious symptoms after chronic stress and could be a new alternative treatment for patients with depression.


Amides/pharmacology , Antidepressive Agents/pharmacology , Anxiety/chemically induced , Benzamides/pharmacology , Corticosterone/pharmacology , Depression/chemically induced , Ethylamines/pharmacology , Tyramine/analogs & derivatives , Tyramine/pharmacology , Amides/administration & dosage , Amides/therapeutic use , Anhedonia/physiology , Animals , Anti-Anxiety Agents/administration & dosage , Anti-Anxiety Agents/pharmacology , Antidepressive Agents/administration & dosage , Antidepressive Agents/therapeutic use , Anxiety/drug therapy , Behavior, Animal/drug effects , Benzamides/administration & dosage , Benzamides/therapeutic use , Brain-Derived Neurotrophic Factor/metabolism , Corticosterone/administration & dosage , Depression/drug therapy , Disease Models, Animal , Ethylamines/administration & dosage , Ethylamines/therapeutic use , Female , Fluvoxamine/administration & dosage , Fluvoxamine/pharmacology , Food Preferences/physiology , Hindlimb Suspension , Hippocampus/metabolism , Mice , Sucrose , Tyramine/administration & dosage , Tyramine/therapeutic use
10.
Pharmacol Rep ; 70(6): 1173-1179, 2018 Dec.
Article En | MEDLINE | ID: mdl-30321807

BACKGROUND: The use of antidepressants in combination is common practice following non-response to single antidepressant agents. Nevertheless, the scientific literature lacks preclinical studies regarding the combined administration of antidepressants across multiple behavioral measures including, but not limited to, cognition. Hence, we aimed to determine the effects of paroxetine (PAR), venlafaxine (VEN) and bupropion (BUP) alone or combined (PAR+BUP or VEN+BUP) on spatial and affective memory tasks to advance the knowledge about the combined use of antidepressants in cognition. METHODS: Adult rats received daily injections (15 days) of PAR (20mg/kg, ip), VEN (20mg/kg, ip), BUP (20mg/kg, ip) alone or combined and were submitted to behavioral measures of spatial memory (radial-arm maze - RAM), aversive memory (passive avoidance - PA), open field (OF) and forced swimming (FST) tests. RESULTS: In the RAM, VEN or VEN+BUP impaired learning, while short-term memory (STM) was impaired by PAR, BUP and their combination. VEN+BUP improved STM as compared to BUP. PAR impaired long-term memory (LTM). VEN or BUP alone impaired STM and long-term fear memory, whilst PAR+BUP or VEN+BUP did not induce significant alterations. CONCLUSIONS: The effects of VEN, PAR or BUP alone and in combination on measures of memory are variable and vary as a function of the pharmacodynamics profile of each drug as well as the specific memory paradigm.


Antidepressive Agents/administration & dosage , Avoidance Learning/drug effects , Bupropion/administration & dosage , Paroxetine/administration & dosage , Spatial Memory/drug effects , Venlafaxine Hydrochloride/administration & dosage , Animals , Antidepressive Agents/toxicity , Avoidance Learning/physiology , Bupropion/toxicity , Drug Therapy, Combination , Male , Maze Learning/drug effects , Maze Learning/physiology , Memory Disorders/chemically induced , Paroxetine/toxicity , Rats , Rats, Wistar , Spatial Memory/physiology , Venlafaxine Hydrochloride/toxicity
11.
J Complement Integr Med ; 16(2)2018 Oct 12.
Article En | MEDLINE | ID: mdl-30315736

Background Schizophrenia is a chronic mental disorder, characterized by positive, negative and cognitive symptoms. In general, several plants have shown activity in diseases related to the central nervous system (e.g., Erythrina velutina (EEEV), also known as "mulungu"). For this reason, we aimed to investigate the effects of standardized ethanol extract obtained from the stem bark of EEEV on the schizophrenia-like behaviors induced by ketamine (KET) administration. Methods Swiss mice were treated with KET (20 mg/kg, i.p.) or saline for 14 days. In addition, from 8th to 14th days, saline, EEEV (200 or 400 mg/kg, p.o.) or olanzapine (OLAN 2 mg/kg, p.o.) were associated to the protocol. On the 14th day of treatment, schizophrenia-like symptoms were evaluated by the prepulse inhibition of the startle reflex (PPI), locomotor activity evaluated by the open field test (OFT), spatial recognition memory evaluated by the Y-maze task and social interaction test (SIT). Results KET has caused deficits in PPI, and it has also has caused hyperlocomotion in OFT and deficits in SIT as compared to control. EEEV in both doses used, reversed behavioral changes induced by KET, likewise results obtained with the administration of OLAN. Conclusions Taken together, the results demonstrate that the standard extract of EEEV was able to revert schizophrenia-like symptoms, due to the administration in repeated doses of ketamine. Thus, our findings lead to a new perspective for the use of EEEV an interesting alternative for drug discovery in schizophrenia.


Erythrina/chemistry , Ketamine/adverse effects , Plant Extracts/administration & dosage , Schizophrenia/drug therapy , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Humans , Locomotion/drug effects , Male , Maze Learning/drug effects , Mice , Oxidative Stress/drug effects , Plant Bark/chemistry , Schizophrenia/chemically induced , Schizophrenia/physiopathology , Social Behavior
12.
Neurochem Int ; 120: 33-42, 2018 11.
Article En | MEDLINE | ID: mdl-30041016

Riparin II (RIP II) is an alkamide isolated from Aniba riparia that has presented antidepressant and anxiolytic effects in acute stress behavioral models. This study aimed to investigate the activity of RIP II in a corticosterone-induced depression mice model. Corticosterone (20 mg/kg, s.c.) was administered once a day for 21 days. RIP II (50 mg/kg, p.o.) or fluvoxamine (FLU, 50 mg/kg, standard antidepressant, p.o.) was administered after corticosterone (CORT) injection, for the last 7 days of CORT treatment. Mice were exposed to the following behavioral tests: forced swimming, tail suspension, open field, sucrose preference, elevated plus maze and ymaze. After behavioral evaluation, brain areas (prefrontal cortex, hippocampus and striatum) were dissected for neurochemical evaluation: oxidative stress parameters (MDA, nitrite and GSH) and BDNF dosage. Repeated CORT administration caused depressive-like behavior in mice as indicated by increased despair effects in forced swimming and tail suspension tests and anhedonia in sucrose preference test. In addition, CORT decreased BDNF levels in the mice hippocampus and induced oxidative load in the brain with significative increase in pro-oxidant markers (lipid peroxidation and nitrite levels) and a decline in anti-oxidant defense system (reduced glutathione levels), indicating a direct effect of stress hormones in the induction of the brain oxidative stress. On the other hand, RIP II treatment reversed CORT-induced depressive-like behavior. Furthermore, this treatment reversed the impairment in BDNF levels and oxidative brain insults caused by CORT. This may demonstrate the mechanisms involved in antidepressant-like effect of RIP II. These findings further support that RIP II may be implicated as pharmacological intervention targeting depression associated with HPA-axis dysregulation.


Antioxidants/pharmacology , Behavior, Animal/drug effects , Benzamides/pharmacology , Hippocampus/drug effects , Tyramine/analogs & derivatives , Animals , Antidepressive Agents/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Corticosterone/pharmacology , Depression/drug therapy , Disease Models, Animal , Hippocampus/metabolism , Lipid Peroxidation/drug effects , Mice , Motor Activity/drug effects , Oxidative Stress/drug effects , Tyramine/pharmacology
13.
J Neuroimmunol ; 320: 133-142, 2018 07 15.
Article En | MEDLINE | ID: mdl-29681406

Peripheral inflammation induced by lipopolysaccharide (LPS) causes a behavioral syndrome with translational relevance for depression. This mental disorder is twice more frequent among women. Despite this, the majority of experimental studies investigating the neurobiological effects of inflammatory models of depression have been performed in males. Here, we sought to determine sex influences in behavioral and oxidative changes in brain regions implicated in the pathophysiology of mood disorders (hypothalamus, hippocampus and prefrontal cortex - PFC) in adult mice 24 h post LPS challenge. Myeloperoxidase (MPO) activity and interleukin (IL)-1ß levels were measured as parameters of active inflammation, while reduced glutathione (GSH) and lipid peroxidation as parameters of oxidative imbalance. We observed that male mice presented behavioral despair, while females anxiety-like alterations. Both sexes were vulnerable to LPS-induced anhedonia. Both sexes presented increased MPO activity in the PFC, while male only in the hippocampus. IL-1ß increased in the PFC and hypothalamus of animals of both sexes, while in the hippocampus a relative increase of this cytokine in males compared to females was detected. GSH levels were decreased in all brain areas investigated in animals of both sexes, while increased lipid peroxidation was observed in the hypothalamus of females and in the hippocampus of males after LPS exposure. Therefore, the present study gives additional evidence of sex influence in LPS-induced behavioral alterations and, for the first time, in the oxidative changes in brain areas relevant for mood regulation.


Behavior, Animal/physiology , Brain/physiopathology , Depression/physiopathology , Inflammation/physiopathology , Oxidative Stress/physiology , Animals , Depression/chemically induced , Disease Models, Animal , Female , Inflammation/pathology , Lipopolysaccharides/toxicity , Male , Mice , Sex Characteristics
14.
Fundam Clin Pharmacol ; 28(1): 95-103, 2014 Feb.
Article En | MEDLINE | ID: mdl-22913717

In past studies conducted by our group, riparin I (rip I) isolated from the green fruit of Aniba riparia presented antianxiety effects in mice, while its analogs rip II and III showed anxiolytic and antidepressant-like actions. This time around, we investigated a possible antidepressant activity of rip I using the forced swimming test (FST) and tail suspension test (TST) as predictive tests for antidepressant activity in rodents. In addition, the involvement of the monoaminergic system in this effect was also assessed. rip I was acutely administered by intraperitoneal (i.p.) and oral (p.o) routes to male mice at doses of 25 and 50 mg/kg. Results showed that rip I at both tested doses and administration routes produced a significant decrease in immobility time in FST and TST. The pretreatment of mice with prazosin (1 mg/kg, i.p., an α1 -adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an α2 -adrenoceptor antagonist), SCH23390 (15 µg/kg, i.p., a dopamine D1 receptor antagonist), sulpiride (50 mg/kg, i.p., a dopamine D2 receptor antagonist), p-chlorophenylalanine (100 mg/kg, an inhibitor of serotonin synthesis) or ritanserin (4 mg/kg, a serotonin 5-HT2(A)/2(C) receptor antagonist) blocked the anti-immobility effects elicited by rip I (50 mg/kg, p.o.) in the FST. Taken together, results indicate that rip I produces significant antidepressant-like activity in the FST and TST, and this effect seems to be dependent on its interaction with noradrenergic, dopaminergic and serotonergic systems.


Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Benzamides/pharmacology , Lauraceae/chemistry , Tyramine/pharmacology , Animals , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/pharmacology , Dopamine/pharmacology , Hindlimb Suspension/methods , Male , Mice , Motor Activity/drug effects , Norepinephrine/pharmacology , Swimming , Tyramine/analogs & derivatives
15.
Am J Ther ; 21(2): 85-90, 2014.
Article En | MEDLINE | ID: mdl-23797756

Antidepressants, including selective serotonin reuptake inhibitors, are commonly prescribed for the treatment of affective disorders such as anxiety and depression. The purpose of this study was to investigate the central effects of acute administration of paroxetine (PXT) combined with lipoic acid (LA) on various behavioral models in mice. Paroxetine (10 and 20 mg/kg), LA (100 mg/kg), or vehicle was administered, intraperitoneally, 30 minutes before the tests. The results showed that PXT (10 mg/kg) alone and in combination with LA increased locomotor activity. In the anxiety models studied, an anxiolytic effect was observed after the administration of LA and PXT. In the tail suspension test, PXT at both doses and in combination with LA caused a significant decrease in immobility time. These results indicate possible anxiolytic and antidepressant effects of LA associated with PXT. These data suggest that coadministration of LA and PXT may improve anxiolytic and antidepressant responses, and being more effective than each drug alone. However, further studies are necessary to investigate the mechanism by which antioxidants exert antidepressant or anxiolytic action.


Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Paroxetine/pharmacology , Thioctic Acid/pharmacology , Animals , Anti-Anxiety Agents/administration & dosage , Anti-Anxiety Agents/pharmacology , Antidepressive Agents/administration & dosage , Anxiety/drug therapy , Depression/drug therapy , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Therapy, Combination , Male , Mice , Motor Activity/drug effects , Paroxetine/administration & dosage , Selective Serotonin Reuptake Inhibitors/administration & dosage , Selective Serotonin Reuptake Inhibitors/pharmacology , Thioctic Acid/administration & dosage
16.
Schizophr Res ; 151(1-3): 12-9, 2013 Dec.
Article En | MEDLINE | ID: mdl-24257517

Schizophrenia was proposed as a progressive neurodevelopmental disorder. In this regard herein we attempted to determine progressive inflammatory and oxidative alterations induced by a neonatal immune challenge and its possible reversal by clozapine administration. For this end, Wistar rats at postnatal day (PN) 5-7 were administered the viral mimetic polyriboinosinic-polyribocytidilic acid (polyI:C) or saline. A distinct group of animals additionally received the antipsychotic drug clozapine (25mg/kg) from PN60 to 74. At PN35 (periadolescence), 60 (adult) and 74 (adulthood) the animals were submitted to behavioral determinations of prepulse inhibition of the startle (PPI) and Y maze task for working memory evaluation. At PN35 and 74 the animals were sacrificed and the hippocampus (HC), prefrontal cortex (PFC) and striatum (ST) immunostained for Iba-1, a microglial marker, and inducible nitric oxide synthase (iNOS). At PN74 oxidative stress parameters, such as, reduced glutathione levels (GSH) and lipid peroxidation were determined. The results showed a progressive increase of microglial activation and iNOS immunostaining from PN35 to PN74 mainly in the CA2 and CA3 regions of the HC and in the ST. At PN74 neonatal challenge also induced an oxidative imbalance. These inflammatory alterations were accompanied by deficits in PPI and working memory only in adult life that were reversed by clozapine. Clozapine administration reversed microglial activation and iNOS increase, but not the alterations of oxidative stress parameters. Taken together these results give further evidences for a neuroprogressive etiology and course of schizophrenia and that clozapine may partly alleviate this process.


Antipsychotic Agents/therapeutic use , Clozapine/therapeutic use , Developmental Disabilities/drug therapy , Developmental Disabilities/etiology , Microglia/pathology , Nitric Oxide Synthase Type II/metabolism , Schizophrenia/complications , Age Factors , Animals , Animals, Newborn , Brain/drug effects , Brain/pathology , Disease Models, Animal , Lipid Peroxidation/drug effects , Male , Malondialdehyde/metabolism , Maze Learning/drug effects , Microglia/metabolism , Oxidative Stress/drug effects , Poly I-C/pharmacology , Rats , Rats, Wistar , Reflex, Startle/drug effects , Schizophrenia/chemically induced
17.
J Psychopharmacol ; 27(11): 1032-43, 2013 Nov.
Article En | MEDLINE | ID: mdl-24045882

It has been hypothesized that oxidative imbalance and alterations in nitrergic signaling play a role in the neurobiology of schizophrenia. Preliminary evidence suggests that adjunctive minocycline treatment is efficacious for cognitive and negative symptoms of schizophrenia. This study investigated the effects of minocycline in the prevention and reversal of ketamine-induced schizophrenia-like behaviors in mice. In the reversal protocol, animals received ketamine (20 mg/kg per day intraperitoneally or saline for 14 days, and minocycline (25 or 50 mg/kg daily), risperidone or vehicle treatment from days 8 to 14. In the prevention protocol, mice were pretreated with minocycline, risperidone or vehicle prior to ketamine. Behaviors related to positive (locomotor activity and prepulse inhibition of startle), negative (social interaction) and cognitive (Y maze) symptoms of schizophrenia were also assessed. Glutathione (GSH), thiobarbituric acid-reactive substances (TBARS) and nitrite levels were measured in the prefrontal cortex, hippocampus and striatum. Minocycline and risperidone prevented and reversed ketamine-induced alterations in behavioral paradigms, oxidative markers (i.e. ketamine-induced decrease and increase in GSH levels and TBARS content, respectively) as well as nitrite levels in the striatum. These data provide a rationale for evaluating minocycline as a novel psychotropic agent and suggest that its mechanism of action includes antioxidant and nitrergic systems.


Antioxidants/metabolism , Ketamine , Minocycline/pharmacology , Nitric Oxide/metabolism , Schizophrenia/drug therapy , Schizophrenia/prevention & control , Schizophrenic Psychology , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Corpus Striatum/metabolism , Drug Therapy, Combination , Glutathione/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Male , Maze Learning , Mice , Minocycline/therapeutic use , Motor Activity/drug effects , Nitrites/analysis , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Risperidone/pharmacology , Risperidone/therapeutic use , Schizophrenia/metabolism , Sensory Gating/drug effects , Social Behavior , Thiobarbituric Acid Reactive Substances/metabolism
18.
Chem Biol Interact ; 205(2): 148-56, 2013 Sep 25.
Article En | MEDLINE | ID: mdl-23872152

PURPOSE: Our great interest in this work was study the synergism between l-tryptophan and dipyrone or paracetamol as well as the interaction of kynurenic acid (l-tryptophan metabolite) and these analgesics agents utilizing a robust methodology. METHODS: We performed the writhing test induced by acetic acid in mice to evaluate the antinociceptive effect of the treatments isolated and combined (p.o. and i.p.). Dose-response curves were constructed and the values of ED50 for treatment alone and combined were statistically compared. In addition, isobolographic analysis was performed and the experimental values were compared with the theoretical values for simple additive effect. RESULTS: The combined treatment with l-tryptophan and dipyrone or paracetamol reduced significantly the ED50 of these analgesics when compared to the isolated treatments. l-tryptophan alone has no antinociceptive effect. l-Tryptophan increases the central amount of 5-HT and the synergism with dipyrone is antagonized by the 5-HT depletion. The kyna has an antinociceptive dose-related effect and a synergistic interaction with dipyrone and paracetamol verified by isobolographic analyses and confirmed by experimental values of ED50 of combined treatments were statistically lower than theoretical calculated values for simple additive effect. Melatonin antagonist receptor attenuates the antinociceptive synergism between l-tryptophan and dipyrone. CONCLUSION: Our results demonstrate that the increased 5-HT amount on the central nervous system is not per se capable to induce antinociception. The l-tryptophan interacts synergistically with dipyrone and paracetamol both orally and by i.p. route. This effect is dependent on the biotransformation of l-tryptophan to 5-HT and involves kynurenic acid and melatonin receptors.


Acetaminophen/administration & dosage , Analgesics, Non-Narcotic/administration & dosage , Dipyrone/administration & dosage , Kynurenic Acid/administration & dosage , Tryptophan/administration & dosage , Animals , Dose-Response Relationship, Drug , Drug Synergism , Mice , Pain Measurement/methods , Receptors, Melatonin/antagonists & inhibitors , Tryptamines/administration & dosage
19.
Chem Biol Interact ; 205(3): 165-72, 2013 Oct 05.
Article En | MEDLINE | ID: mdl-23872256

Riparin II (RipII), an alkamide isolated from the green fruit of Aniba riparia, was tested in the various animal models of inflammation to investigate its anti-inflammatory activity. Male Wistar rats (180-240g) were treated with RipII by gavage at doses 25 or 50mg/kg, before initiating the inflammatory responses. The tests used were paw edema induced by carrageenan, dextran, histamine or serotonin; peritonitis induced by carrageenan and fMLP, as well as the measurement of MPO activity, TNF-α and Il-1ß amount in the peritoneal fluid. In the animal models of carrageenan and dextran-induced paw edema, the animals treated with RipII showed lower edema than those of the control group. Treatment with RipII also reduced the paw edema induced by histamine but not serotonin. In the carrageenan-induced peritonitis model, treatment with RipII reduced leukocyte migration, the MPO activity and the amount of TNF-α and IL-1ß in the peritoneal fluid. In summary, these results indicate that RipII has an anti-inflammatory activity in chemical models of acute inflammation. RipII might be directly or indirectly inhibiting the activity, production or release of pro-inflammatory mediators involved in the generation of the pain associated with inflammation.


Anti-Inflammatory Agents/pharmacology , Benzamides/pharmacology , Inflammation/drug therapy , Tyramine/analogs & derivatives , Animals , Disease Models, Animal , Edema/chemically induced , Edema/drug therapy , Inflammation/chemically induced , Male , Malondialdehyde/metabolism , Mice , Peritonitis/chemically induced , Peritonitis/drug therapy , Rats , Rats, Wistar , Thiobarbituric Acid Reactive Substances/metabolism , Tyramine/pharmacology
20.
Eur J Pharmacol ; 713(1-3): 31-8, 2013 Aug 05.
Article En | MEDLINE | ID: mdl-23665499

The systemic administration of lipopolysaccharide (LPS) induces time-dependent behavioral alterations, which are related to sickness behavior and depression. The time-course effects of LPS on prepulse inhibition (PPI) remain unknown. Furthermore, the time-dependent effects of LPS on central nitrite content had not been investigated. Therefore, we studied alterations induced by single LPS (0.5mg/kg, i.p.) administration to mice on parameters, such as PPI, depressive- and anxiety-like behaviors, working memory, locomotor activity and motor coordination, 1.5 and 24h post-LPS administration. IL-1ß and TNFα in the blood and brain as well as brain nitrite levels were evaluated in the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST). An overall hypolocomotion was observed 1.5h post-LPS, along with depressive-like behaviors and deficits in working memory. Increments in IL-1ß content in plasma and PFC, TNFα in plasma and decreases in nitrite levels in the ST and PFC were also verified. Twenty-four hours post-LPS treatment, depressive-like behaviors and working memory deficits persisted, while PPI levels significantly reduced along with increases in IL-1ß content in the PFC and a decrease in nitrite levels in the HC, ST and PFC. Our data demonstrate that a delayed increase (i.e., 24h post-LPS) in PPI levels ensue, which may be useful behavioral parameter for LPS-induced depression. A decrease in nitrergic neurotransmission was associated with these behavioral findings.


Behavior, Animal/drug effects , Brain/drug effects , Inhibition, Psychological , Lipopolysaccharides/pharmacology , Nitrites/metabolism , Animals , Brain/metabolism , Brain/physiopathology , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Corpus Striatum/physiopathology , Cytokines/blood , Cytokines/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/physiopathology , Male , Maze Learning/drug effects , Mice , Motor Activity/drug effects , Nitric Oxide/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiopathology , Reflex, Startle/drug effects , Rotarod Performance Test , Swimming , Time Factors
...