Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Gene Ther ; 30(8): 1105-1113, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37041276

RESUMEN

Members of the HDAC family are predictive biomarkers and regulate the tumorigenesis in several cancers. However, the role of these genes in the biology of intracranial ependymomas (EPNs) remains unexplored. Here, an analysis of eighteen HDACs genes in an EPN transcriptomic dataset, revealed significantly higher levels of HDAC4 in supratentorial ZFTA fusion (ST-ZFTA) compared with ST-YAP1 fusion and posterior fossa EPNs, while HDAC7 and SIRT2 were downregulated in ST-ZFTA. HDAC4 was also overexpressed in ST-ZFTA as measured by single-cell RNA-Seq, quantitative real time-polymerase chain reaction, and immunohistochemistry. Survival analyses showed a significantly worse outcome for EPNs with higher HDAC4 and SIRT1 mRNA levels. Ontology enrichment analysis showed an HDAC4-high signature consistent with viral processes while collagen-containing extracellular matrix and cell-cell junction were enriched in those with an HDAC4-low signature. Immune gene analysis demonstrated a correlation between HDAC4 expression and low levels of NK resting cells. Several small molecules compounds targeting HDAC4 and ABCG2, were predicted by in silico analysis to be effective against HDAC4-high ZFTA. Our results provide novel insights into the biology of the HDAC family in intracranial ependymomas and reveal HDAC4 as a prognostic marker and potential therapeutic target in ST-ZFTA.


Asunto(s)
Neoplasias Encefálicas , Ependimoma , Humanos , Pronóstico , Factores de Transcripción/genética , Ependimoma/genética , Ependimoma/metabolismo , Neoplasias Encefálicas/genética , Perfilación de la Expresión Génica , Histona Desacetilasas/genética , Proteínas Represoras/genética
3.
Anticancer Drugs ; 28(3): 298-306, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27930382

RESUMEN

T-acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer that arises from the malignant transformation of T-cell progenitors. Despite the significant progress in current treatment, challenges remain the lifelong morbidity after current chemotherapy regimens and postrelapse survival. In addition, patients with T-ALL have inferior outcomes compared with those with B-cell precursor; consequently, novel therapeutic approaches are still necessary to improve the outcome in this cohort. YM155 is an imidazolium derivative originally discovered as a suppressant of survivin expression. It has been reported that YM155 has potent antiproliferative activity on a variety of human cancer cell lines; however, its effects in T-ALL cells have been underexplored. The aim of the present study was to examine the effects of YM155 on p53-deficient T-ALL cell lines, JURKAT and CCRF-CEM. Resazurin dye was used to evaluate cell viability. Colony formation was observed in MethoCult methylcellulose medium. Apoptotic cells were detected by flow cytometry (annexin V labeling and TUNEL assay). Cell cycle analysis was carried out by DNA quantification in flow cytometry. DNA damage was assessed using a comet assay and the survivin expression profile was evaluated by real-time PCR and immunoblotting. YM155 treatment decreased cell viability and clonogenicity capacity of T-ALL cells, increased the apoptosis index and DNA damage, and altered the cell cycle dynamic, independent of survivin inhibition. Taken together, the data reinforce that YM155 may be useful as a therapeutic possibility to combat leukemia.


Asunto(s)
Imidazoles/farmacología , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Naftoquinonas/farmacología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Proteína p53 Supresora de Tumor/deficiencia , Adolescente , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Procesos de Crecimiento Celular/efectos de los fármacos , Preescolar , Daño del ADN , Femenino , Humanos , Células Jurkat , Masculino , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Survivin , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA