RESUMEN
Concerning the potential application of the optically active isomer (R,R)-2,3-butanediol, and its production by a non-pathogenic bacterium Paenibacillus polymyxa ATCC 842, the present study evaluated the use of a commercial crude yeast extract Nucel®, as an organic nitrogen and vitamin source, at different medium composition and two airflows (0.2 or 0.5 vvm). The medium formulated (M4) with crude yeast extract carried out with the airflow of 0.2 vvm (experiment R6) allowed for a reduction in the cultivation time and kept the dissolved oxygen values at low levels until the total glucose consumption. Thus, the experiment R6 led to a fermentation yield of 41% superior when compared to the standard medium (experiment R1), which was conducted at airflow of 0.5 vvm. The maximum specific growth rate at R6 (0.42 h-1) was lower than R1 (0.60 h-1), however, the final cell concentration was not affected. Moreover, this condition (medium formulated-M4 and low airflow-0.2 vvm) was a great alternative to produce (R,R)-2,3-BD at fed-batch mode, resulting in 30 g.L-1 of the isomer at 24 h of cultivation, representing the main product in the broth (77%) and with a fermentation yield of 80%. These results showed that both medium composition and oxygen supply have an important role to produce 2,3-BD by P. polymyxa.
Asunto(s)
Paenibacillus polymyxa , Paenibacillus , Acetoína , Fermentación , Butileno Glicoles , Reactores BiológicosRESUMEN
In the original publication, table captions were incorrectly published. The correct captions are given here.
RESUMEN
Lactobionic acid and sorbitol are produced from lactose and fructose in reactions catalyzed by glucose-fructose oxidoreductase and glucono-δ-lactonase, periplasmic enzymes present in Zymomonas mobilis cells. Considering the previously established laboratory-scale process parameters, the bioproduction of lactobionic acid was explored to enable the transfer of this technology to the productive sector. Aspects such as pH, temperature, reuse and storage conditions of Ca-alginate immobilized Z. mobilis cells, and large-scale bioconversion were assessed. Greatest catalyst performance was observed between pH range of 6.4 and 6.8 and from 39 to 43 °C. The immobilized biocatalyst was reused for twenty three 24-h batches preserving the enzymatic activity. The activity was maintained during biocatalyst storage for up to 120 days. Statistically similar results, approximately 510 mmol/L of lactobionic acid, were attained in bioconversion of 0.2 and 3.0 L, indicating the potential of this technique of lactobionic acid production to be scaled up to the industrial level.