Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Toxicol ; 98(7): 2153-2171, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38806720

RESUMEN

Diisopentyl phthalate (DiPeP) is primarily used as a plasticizer or additive within the production of polyvinyl chloride (PVC), and has many additional industrial applications. Its metabolites were recently found in urinary samples of pregnant women; thus, this substance is of concern as relates to human exposure. Depending upon the nature of the alcohol used in its synthesis, DiPeP may exist either as a mixture consisting of several branched positional isomers, or as a single defined structure. This article investigates the skin sensitization potential and immunomodulatory effects of DiPeP CAS No. 84777-06-0, which is currently marketed and classified as a UVCB substance, by in silico and in vitro methods. Our findings showed an immunomodulatory effect for DiPeP in LPS-induced THP-1 activation assay (increased CD54 expression). In silico predictions using QSAR TOOLBOX 4.5, ToxTree, and VEGA did not identify DiPeP, in the form of a discrete compound, as a skin sensitizer. The keratinocyte activation (Key Event 2 (KE2) of the adverse outcome pathway (AOP) for skin sensitization) was evaluated by two different test methods (HaCaT assay and RHE assay), and results were discordant. While the HaCaT assay showed that DiPeP can activate keratinocytes (increased levels of IL-6, IL-8, IL-1α, and ILA gene expression), in the RHE assay, DiPeP slightly increased IL-6 release. Although inconclusive for KE2, the role of DiPeP in KE3 (dendritic cell activation) was demonstrated by the increased levels of CD54 and IL-8 and TNF-α in THP-1 cells (THP-1 activation assay). Altogether, findings were inconclusive regarding the skin sensitization potential of the UVCB DiPeP-disagreeing with the results of DiPeP in the form of discrete compound (skin sensitizer by the LLNA assay). Additional studies are needed to elucidate the differences between DiPeP isomer forms, and to better understand the applicability domains of non-animal methods in identifying skin sensitization hazards of UVCB substances.


Asunto(s)
Simulación por Computador , Queratinocitos , Ácidos Ftálicos , Humanos , Queratinocitos/efectos de los fármacos , Ácidos Ftálicos/toxicidad , Células HaCaT , Piel/efectos de los fármacos , Piel/inmunología , Piel/metabolismo , Relación Estructura-Actividad Cuantitativa , Plastificantes/toxicidad , Células THP-1 , Molécula 1 de Adhesión Intercelular/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Línea Celular
2.
Toxicology ; 493: 153548, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37207816

RESUMEN

One of the major challenges in chemical toxicity testing is the possibility to protect human health against adverse effects with non-animal methods. In this paper, 4-Octylphenol (OP) was tested for skin sensitization and immunomodulatory effects using an integrated in silico-in vitro test approach. In silico tools (QSAR TOOLBOX 4.5, ToxTree and VEGA) were used together with several in vitro tests including HaCaT cells (quantification of IL-6; IL-8; IL-1α and IL-18 by ELISA and expression of genes TNF, IL1A, IL6 and IL8 by RT- qPCR), RHE model (quantification of IL-6; IL-8; IL-1α and IL-18 by ELISA) and THP-1 activation assay (CD86/CD54 expression and IL-8 release). Additionally, the immunomodulatory effect of OP was investigated using lncRNAs MALAT1 and NEAT1 expression and LPS-induced THP-1 activation (CD86/CD54 expression and IL-8 release). The in silico tools predicted OP as a sensitizer. In vitro tests are also concordant with the in silico prediction. OP increased IL-6 expression (HaCaT cells); IL-18 and IL-8 expressions (RHE model). An irritant potential was also shown by a great expression of IL-1α (RHE model); and increased expression of CD54 marker and IL-8 in THP-1 cells. Immunomodulatory effects of OP were demonstrated by the downregulation of NEAT1, MALAT1 (epigenetic markers), IL6 and IL8; and an increase in LPS-induced CD54 and IL-8 expressions. Overall, results indicate that OP is a skin sensitizer, being positive in three key events of the AOP for skin sensitization, also showing immunomodulatory effects.


Asunto(s)
Interleucina-8 , ARN Largo no Codificante , Humanos , Interleucina-8/genética , Interleucina-18/farmacología , Interleucina-6 , Lipopolisacáridos/toxicidad , Antígeno B7-2/metabolismo , Antígeno B7-2/farmacología , Piel , Alérgenos
3.
J Vis Exp ; (191)2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36744790

RESUMEN

Fish cell lines are promising in vitro models for ecotoxicity assessment; however, conventional monolayer culture systems (2D culture) have well-known limitations (e.g., culture longevity and maintenance of some in vivo cellular functions). Thus, 3D cultures, such as spheroids, have been proposed, since these models can reproduce tissue-like structures, better recapturing the in vivo conditions. This article describes an effective, easy, and fast 3D culture protocol for the formation of spheroids with two zebrafish (Danio rerio) cell lines: ZEM2S (embryo) and ZFL (normal hepatocyte). The protocol consists of plating the cells in a round-bottom, ultra-low attachment, 96-well plate. After 5 days under orbital shaking (70 rpm), a single spheroid per well is formed. The formed spheroids present stable size and shape, and this method avoids the formation of multiple spheroids in a well; thus, it is not necessary to handpick spheroids of similar sizes. The ease, speed, and reproducibility of this spheroid method make it useful for high-throughput in vitro tests.


Asunto(s)
Esferoides Celulares , Pez Cebra , Animales , Reproducibilidad de los Resultados , Técnicas de Cultivo de Célula/métodos , Hígado , Hepatocitos , Línea Celular
4.
Ecotoxicology ; 30(9): 1893-1909, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34379241

RESUMEN

Fish cell spheroids are promising 3D culture models for vertebrate replacement in ecotoxicology. However, new alternative ecotoxicological methods must be adapted for applications in industry and for regulatory purposes; such methods must be cost-effective, simple to manipulate and provide rapid results. Therefore, we compared the effectiveness of the traditional hanging drop (HD), orbital shaking (OS), and HD combined with OS (HD+OS) methods on the formation of zebrafish cell line spheroids (ZFL and ZEM2S). Time in HD (3-5 days) and different 96-well plates [flat-bottom or ultra-low attachment of round-bottom (ULA-plates)] in OS were evaluated. Easy handling, rapid spheroid formation, uniform-sized spheroids, and circularity were assessed to identify the best spheroid protocol. Traditional HD alone did not result in ZFL spheroid formation, whereas HD (5 days)+OS did. When using the OS, spheroids only formed on the ULA-plate. Both HD+OS and OS were reproducible in size (177.50 ± 2.81 µm and 225.62 ± 19.20 µm, respectively) and circularity (0.83 ± 0.02 and 0.80 ± 0.01, respectively) of ZFL spheroids. Nevertheless, HD+OS required a considerable time to completely form spheroids (10 days) and intensive handling, whereas the OS was fast (5 days of incubation) and simple. OS also yielded reproducible ZEM2S spheroids in 1 day (226.23 ± 0.57 µm diameter and 0.80 ± 0.01 circularity). In conclusion, OS in ULA-plate is an effective and simple spheroid protocol for high-throughput ecotoxicity testing. This study contributes to identify a fast, reproducible, and simple protocol of single piscine spheroid formation in 96-well plates and supports the application of fish 3D model in industry and academia.


Asunto(s)
Técnicas de Cultivo de Célula , Pez Cebra , Animales , Línea Celular Tumoral , Hígado , Esferoides Celulares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...