Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
PLoS Genet ; 16(7): e1008949, 2020 07.
Article En | MEDLINE | ID: mdl-32702045

In Paramecium tetraurelia, a large proportion of the germline genome is reproducibly removed from the somatic genome after sexual events via a process involving small (s)RNA-directed heterochromatin formation and DNA excision and repair. How germline limited DNA sequences are specifically recognized in the context of chromatin remains elusive. Here, we use a reverse genetics approach to identify factors involved in programmed genome rearrangements. We have identified a P. tetraurelia homolog of the highly conserved histone chaperone Spt16 subunit of the FACT complex, Spt16-1, and show its expression is developmentally regulated. A functional GFP-Spt16-1 fusion protein localized exclusively in the nuclei where genome rearrangements take place. Gene silencing of Spt16-1 showed it is required for the elimination of all germline-limited sequences, for the survival of sexual progeny, and for the accumulation of internal eliminated sequence (ies)RNAs, an sRNA population produced when elimination occurs. Normal accumulation of 25 nt scanRNAs and deposition of silent histone marks H3K9me3 and H3K27me3 indicated that Spt16-1 does not regulate the scanRNA-directed heterochromatin pathway involved in the early steps of DNA elimination. We further show that Spt16-1 is required for the correct nuclear localization of the PiggyMac (Pgm) endonuclease, which generates the DNA double-strand breaks required for DNA elimination. Thus, Spt16-1 is essential for Pgm function during programmed genome rearrangements. We propose a model in which Spt16-1 mediates interactions between the excision machinery and chromatin, facilitating endonuclease access to DNA cleavage sites during genome rearrangements.


Cell Nucleus/genetics , Histone Chaperones/genetics , Paramecium/genetics , Transposases/genetics , Base Sequence/genetics , DNA Breaks, Double-Stranded , DNA Cleavage , DNA, Protozoan/genetics , Endonucleases , Gene Rearrangement/genetics , Genome, Protozoan/genetics , Paramecium/growth & development
2.
BMC Genomics ; 18(1): 483, 2017 06 26.
Article En | MEDLINE | ID: mdl-28651633

BACKGROUND: The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research using this system. The major aim of the work reported here was to build an improved gene annotation pipeline for the Paramecium lineage. RESULTS: We generated oriented RNA-Seq transcriptome data across the sexual process of autogamy for the model species Paramecium tetraurelia. We determined, for the first time in a ciliate, candidate P. tetraurelia transcription start sites using an adapted Cap-Seq protocol. We developed TrUC, multi-threaded Perl software that in conjunction with TopHat mapping of RNA-Seq data to a reference genome, predicts transcription units for the annotation pipeline. We used EuGene software to combine annotation evidence. The high quality gene structural annotations obtained for P. tetraurelia were used as evidence to improve published annotations for 3 other Paramecium species. The RNA-Seq data were also used for differential gene expression analysis, providing a gene expression atlas that is more sensitive than the previously established microarray resource. CONCLUSIONS: We have developed a gene annotation pipeline tailored for the compact genomes and tiny introns of Paramecium species. A novel component of this pipeline, TrUC, predicts transcription units using Cap-Seq and oriented RNA-Seq data. TrUC could prove useful beyond Paramecium, especially in the case of high gene density. Accurate predictions of 3' and 5' UTR will be particularly valuable for studies of gene expression (e.g. nucleosome positioning, identification of cis regulatory motifs). The P. tetraurelia improved transcriptome resource, gene annotations for P. tetraurelia, P. biaurelia, P. sexaurelia and P. caudatum, and Paramecium-trained EuGene configuration are available through ParameciumDB ( http://paramecium.i2bc.paris-saclay.fr ). TrUC software is freely distributed under a GNU GPL v3 licence ( https://github.com/oarnaiz/TrUC ).


Gene Expression Profiling/methods , Genomics/methods , Molecular Sequence Annotation/methods , Paramecium/genetics , Sequence Analysis, RNA
3.
Fly (Austin) ; 7(4): 237-41, 2013.
Article En | MEDLINE | ID: mdl-24088599

Transposable element (TE) activity is repressed in the Drosophila germline by Piwi-Interacting RNAs (piRNAs), a class of small non-coding RNAs. These piRNAs are produced by discrete genomic loci containing TE fragments. In a recent publication, we tested for the existence of a strict epigenetic induction of piRNA production capacity by a locus in the D. melanogaster genome. We used 2 lines carrying a transgenic 7-copy tandem cluster (P-lacZ-white) at the same genomic site. This cluster generates in both lines a local heterochromatic sector. One line (T-1) produces high levels of ovarian piRNAs homologous to the P-lacZ-white transgenes and shows a strong capacity to repress homologous sequences in trans, whereas the other line (BX2) is devoid of both of these capacities. The properties of these 2 lines are perfectly stable over generations. We have shown that the maternal transmission of a cytoplasm carrying piRNAs from the first line can confer to the inert transgenic locus of the second, a totally de novo capacity to produce high levels of piRNAs as well as the ability to induce homology-dependent silencing in trans. These new properties are stably inherited over generations (n>50). Furthermore, the converted locus has itself become able to convert an inert transgenic locus via cytoplasmic maternal inheritance. This results in a stable epigenetic conversion process, which can be performed recurrently--a phenomenon termed paramutation and discovered in Maize 60 y ago. Paramutation in Drosophila corresponds to the first stable paramutation in animals and provides a model system to investigate the epigenetically induced emergence of a piRNA-producing locus, a crucial step in epigenome shaping. In this Extra View, we discuss some additional functional aspects and the possible molecular mechanism of this piRNA-linked paramutation.


Drosophila melanogaster/genetics , Epigenesis, Genetic , RNA, Small Interfering/physiology , Animals , Cytoplasm/metabolism , Female , Gene Expression Regulation , Genome, Insect , Male , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
4.
RNA Biol ; 10(8): 1233-9, 2013 Aug.
Article En | MEDLINE | ID: mdl-23880829

Piwi-interacting RNAs (piRNAs) ensure transposable element silencing in Drosophila, thereby preserving genome integrity across generations. Primary piRNAs arise from the processing of long RNA transcripts produced in the germ line by a limited number of telomeric and pericentromeric loci. Primary piRNAs bound to the Argonaute protein Aubergine then drive the production of secondary piRNAs through the "ping-pong" amplification mechanism that involves an interplay with piRNAs bound to the Argonaute protein Argonaute-3. We recently discovered that clusters of P-element-derived transgenes produce piRNAs and mediate silencing of homologous target transgenes in the female germ line. We also demonstrated that some clusters are able to convert other homologous inactive transgene clusters into piRNA-producing loci, which then transmit their acquired silencing capacity over generations. This paramutation phenomenon is mediated by maternal inheritance of piRNAs homologous to the transgenes. Here we further mined our piRNA sequencing data sets generated from various strains carrying transgenes with partial sequence homology at distinct genomic sites. This analysis revealed that same sequences in different genomic contexts generate highly similar profiles of piRNA abundances. The strong tendency of piRNAs for bearing a U at their 5' end has long been recognized. Our observations support the notion that, in addition, the relative frequencies of Drosophila piRNAs are locally determined by the DNA sequence of piRNA loci.


Drosophila melanogaster/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Animals , Argonaute Proteins , Base Sequence , Drosophila melanogaster/metabolism , Female , Gene Silencing , Genetic Loci , Germ Cells , RNA, Small Interfering/chemistry , Sequence Analysis, DNA , Sequence Analysis, RNA , Sequence Homology, Nucleic Acid , Transgenes , Uridine/metabolism
6.
PLoS Genet ; 8(10): e1003006, 2012.
Article En | MEDLINE | ID: mdl-23071455

Chromodomains are found in many regulators of chromatin structure, and most of them recognize methylated lysines on histones. Here, we investigate the role of the Drosophila melanogaster protein Corto's chromodomain. The Enhancer of Trithorax and Polycomb Corto is involved in both silencing and activation of gene expression. Over-expression of the Corto chromodomain (CortoCD) in transgenic flies shows that it is a chromatin-targeting module, critical for Corto function. Unexpectedly, mass spectrometry analysis reveals that polypeptides pulled down by CortoCD from nuclear extracts correspond to ribosomal proteins. Furthermore, real-time interaction analyses demonstrate that CortoCD binds with high affinity RPL12 tri-methylated on lysine 3. Corto and RPL12 co-localize with active epigenetic marks on polytene chromosomes, suggesting that both are involved in fine-tuning transcription of genes in open chromatin. RNA-seq based transcriptomes of wing imaginal discs over-expressing either CortoCD or RPL12 reveal that both factors deregulate large sets of common genes, which are enriched in heat-response and ribosomal protein genes, suggesting that they could be implicated in dynamic coordination of ribosome biogenesis. Chromatin immunoprecipitation experiments show that Corto and RPL12 bind hsp70 and are similarly recruited on gene body after heat shock. Hence, Corto and RPL12 could be involved together in regulation of gene transcription. We discuss whether pseudo-ribosomal complexes composed of various ribosomal proteins might participate in regulation of gene expression in connection with chromatin regulators.


Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Expression Regulation , Polycomb Repressive Complex 1/metabolism , Ribosomal Proteins/metabolism , Amino Acid Sequence , Animals , Animals, Genetically Modified , Chromatin/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Gene Expression , Gene Expression Profiling , Genome-Wide Association Study , HSP70 Heat-Shock Proteins/genetics , Lysine/metabolism , Methylation , Molecular Sequence Data , Phenotype , Polytene Chromosomes/genetics , Polytene Chromosomes/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Ribosomal Proteins/chemistry , Ribosomal Proteins/genetics , Sequence Alignment , Transcription, Genetic , Transcriptome
7.
Nature ; 490(7418): 112-5, 2012 Oct 04.
Article En | MEDLINE | ID: mdl-22922650

A paramutation is an epigenetic interaction between two alleles of a locus, through which one allele induces a heritable modification in the other allele without modifying the DNA sequence. The paramutated allele itself becomes paramutagenic, that is, capable of epigenetically converting a new paramutable allele. Here we describe a case of paramutation in animals showing long-term transmission over generations. We previously characterized a homology-dependent silencing mechanism referred to as the trans-silencing effect (TSE), involved in P-transposable-element repression in the germ line. We now show that clusters of P-element-derived transgenes that induce strong TSE can convert other homologous transgene clusters incapable of TSE into strong silencers, which transmit the acquired silencing capacity through 50 generations. The paramutation occurs without any need for chromosome pairing between the paramutagenic and the paramutated loci, and is mediated by maternal inheritance of cytoplasm carrying Piwi-interacting RNAs (piRNAs) homologous to the transgenes. The repression capacity of the paramutated locus is abolished by a loss-of-function mutation of the aubergine gene involved in piRNA biogenesis, but not by a loss-of-function mutation of the Dicer-2 gene involved in siRNA production. The paramutated cluster, previously producing barely detectable levels of piRNAs, is converted into a stable, strong piRNA-producing locus by the paramutation and becomes fully paramutagenic itself. Our work provides a genetic model for the emergence of piRNA loci, as well as for RNA-mediated trans-generational repression of transposable elements.


Drosophila melanogaster/genetics , Gene Silencing , Genetic Loci/genetics , RNA, Small Interfering/biosynthesis , RNA, Small Interfering/genetics , Alleles , Animals , Cytoplasm/genetics , DNA Transposable Elements/genetics , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Extrachromosomal Inheritance/genetics , Female , Germ Cells/metabolism , Male , Models, Genetic , Multigene Family/genetics , Mutation , Ovary/metabolism , Peptide Initiation Factors/deficiency , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , RNA Helicases/deficiency , RNA Helicases/genetics , Ribonuclease III/deficiency , Ribonuclease III/genetics , Transgenes/genetics
8.
G3 (Bethesda) ; 2(3): 331-8, 2012 Mar.
Article En | MEDLINE | ID: mdl-22413086

The study of P transposable element repression in Drosophila melanogaster led to the discovery of the trans-silencing effect (TSE), a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequences) represses in trans, in the female germline, a homologous P-lacZ transgene inserted in euchromatin. TSE shows variegation in ovaries and displays a maternal effect as well as epigenetic transmission through meiosis. In addition, TSE is highly sensitive to mutations affecting heterochromatin components (including HP1) and the Piwi-interacting RNA silencing pathway (piRNA), a homology-dependent silencing mechanism that functions in the germline. TSE appears thus to involve the piRNA-based silencing proposed to play a major role in P repression. Under this hypothesis, TSE may also be established when homology between the telomeric and target loci involves sequences other than P elements, including sequences exogenous to the D. melanogaster genome. We have tested whether TSE can be induced via lacZ sequence homology. We generated a piggyBac-otu-lacZ transgene in which lacZ is under the control of the germline ovarian tumor promoter, resulting in strong expression in nurse cells and the oocyte. We show that all piggyBac-otu-lacZ transgene insertions are strongly repressed by maternally inherited telomeric P-lacZ transgenes. This repression shows variegation between egg chambers when it is incomplete and presents a maternal effect, two of the signatures of TSE. Finally, this repression is sensitive to mutations affecting aubergine, a key player of the piRNA pathway. These data show that TSE can occur when silencer and target loci share solely a sequence exogenous to the D. melanogaster genome. This functionally supports the hypothesis that TSE represents a general repression mechanism which can be co-opted by new transposable elements to regulate their activity after a transfer to the D. melanogaster genome.

9.
PLoS One ; 3(9): e3249, 2008 Sep 22.
Article En | MEDLINE | ID: mdl-18813361

BACKGROUND: The study of P element repression in Drosophila melanogaster led to the discovery of the telomeric Trans-Silencing Effect (TSE), a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequences, "TAS") has the capacity to repress in trans, in the female germline, a homologous P-lacZ transgene located in euchromatin. TSE can show variegation in ovaries, displays a maternal effect as well as an epigenetic transmission through meiosis and involves heterochromatin and RNA silencing pathways. PRINCIPAL FINDINGS: Here, we analyze phenotypic and genetic properties of TSE. We report that TSE does not occur in the soma at the adult stage, but appears restricted to the female germline. It is detectable during development at the third instar larvae where it presents the same tissue specificity and maternal effect as in adults. Transgenes located in TAS at the telomeres of the main chromosomes can be silencers which in each case show the maternal effect. Silencers located at non-homologous telomeres functionally interact since they stimulate each other via the maternally-transmitted component. All germinally-expressed euchromatic transgenes tested, located on all major chromosomes, were found to be repressed by a telomeric silencer: thus we detected no TSE escaper. The presence of the euchromatic target transgene is not necessary to establish the maternal inheritance of TSE, responsible for its epigenetic behavior. A single telomeric silencer locus can simultaneously repress two P-lacZ targets located on different chromosomal arms. CONCLUSIONS AND SIGNIFICANCE: Therefore TSE appears to be a widespread phenomenon which can involve different telomeres and work across the genome. It can explain the P cytotype establishment by telomeric P elements in natural Drosophila populations.


Drosophila melanogaster/genetics , Gene Silencing , Telomere/ultrastructure , Animals , Chromosome Mapping , Crosses, Genetic , DNA Transposable Elements , Epigenesis, Genetic , Gene Expression Regulation , Models, Biological , Models, Genetic , Phenotype , RNA Interference , Temperature , Transgenes
...