Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Clin Neuropathol ; 28(5): 344-9, 2009.
Article En | MEDLINE | ID: mdl-19788049

Neuronal protein aggregates are considered as pathological hallmarks of various human neurodegenerative diseases, including the so-called CAG-repeat disorders, such as spinocerebellar ataxia Type 6 (SCA6). Since the immunocytochemical findings of an initial post-mortem study using a specific antibody against the disease protein of SCA6 (i.e., pathologically altered alpha-1A subunit of the P/Q type voltage-dependent calcium channel, CACNA1A) have not been confirmed so far, the occurrence and central nervous system distribution of neuronal protein aggregates in SCA6 is still a matter of debate. Owing to the fact that the antibody against the pathologically altered CACNA1A is not commercially available, we decided to apply a recently generated p62 antibody on brain tissue from two clinically diagnosed and genetically confirmed SCA6 patients. Application of this p62 antibody revealed numerous cytoplasmic neuronal inclusions in the degenerated cerebellar dentate nucleus and inferior olive of both SCA6 patients studied, whereby a subset of these aggregates were also ubiquitin-immunopositive. In view of the known role of p62 in protein degradation as well as aggresome/sequestosome formation, the p62 aggregate formation observed in the present study suggests that SCA6 not only is associated with an impairment of the calcium channel function and an elongated polyglutamine stretch in CACNA1A, but also with a defective protein handling by the protein quality control system.


Adaptor Proteins, Signal Transducing/analysis , Cerebellar Nuclei/chemistry , Inclusion Bodies/chemistry , Neurons/chemistry , Olivary Nucleus/chemistry , Spinocerebellar Ataxias/metabolism , Adaptor Proteins, Signal Transducing/immunology , Aged , Aged, 80 and over , Antibodies/immunology , Cell Count , Cerebellar Nuclei/pathology , Female , Humans , Immunohistochemistry , Inclusion Bodies/pathology , Machado-Joseph Disease/metabolism , Male , Middle Aged , Neurons/pathology , Olivary Nucleus/pathology , Purkinje Cells/chemistry , Purkinje Cells/pathology , Sequestosome-1 Protein , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology , Ubiquitin/metabolism
2.
Neuropathol Appl Neurobiol ; 35(5): 515-27, 2009 Oct.
Article En | MEDLINE | ID: mdl-19207264

AIMS: Spinocerebellar ataxia type 6 (SCA6) is a late onset autosomal dominantly inherited ataxic disorder, which belongs to the group of CAG repeat, or polyglutamine, diseases. Although, it has long been regarded as a 'pure' cerebellar disease, recent clinical studies have demonstrated disease signs challenging the view that neurodegeneration in SCA6 is confined to the well-known lesions in the cerebellum and inferior olive. METHODS: We performed a systematic pathoanatomical study throughout the brains of three clinically diagnosed and genetically confirmed SCA6 patients. RESULTS: This study confirmed that brain damage in SCA6 goes beyond the known brain predilection sites. In all of the SCA6 patients studied loss of cerebellar Purkinje cells and absence of morphologically intact layer V giant Betz pyramidal cells in the primary motor cortex, as well as widespread degeneration of brainstem nuclei was present. Additional damage to the deep cerebellar nuclei was observed in two of three SCA6 patients. CONCLUSIONS: In view of the known functional role of affected central nervous grey components it is likely that their degeneration at least in part is responsible for the occurrence of a variety of SCA6 disease symptoms.


Brain/pathology , Nerve Degeneration/pathology , Spinocerebellar Ataxias/pathology , Aged , Autopsy , Female , Humans , Male , Pedigree , Spinocerebellar Ataxias/genetics
3.
Neuropathol Appl Neurobiol ; 34(2): 155-68, 2008 Apr.
Article En | MEDLINE | ID: mdl-17971076

Spinocerebellar ataxia type 7 (SCA7) represents a rare and severe autosomal dominantly inherited ataxic disorder and is among the known CAG-repeat, or polyglutamine, diseases. In contrast to other currently known autosomal dominantly inherited ataxic disorders, SCA7 may manifest itself with different clinical courses. Because the degenerative changes evolving during these different clinical courses are not well known, many neurological disease symptoms still are unexplained. We performed an initial pathoanatomical study on unconventional thick tissue sections of the brain of a clinically diagnosed and genetically confirmed adult-onset SCA7 patient with progressive visual impairments. In this patient we observed loss of myelinated fibres in distinct central nervous fibre tracts, and widespread degeneration of the cerebellum, telencephalon, diencephalon and lower brainstem. These degenerative changes offer appropriate explanations for a variety of less-understood neurological symptoms in adult-onset SCA7 patients with visual impairments: gait, stance and limb ataxia, falls, dysarthria, dysphagia, pyramidal signs, Parkinsonian features, writing problems, impairments of saccades and smooth pursuits, altered pupillary functions, somatosensory deficits, auditory deficits and mental impairments.


Brain/pathology , Retina/pathology , Spinocerebellar Ataxias/pathology , Spinocerebellar Ataxias/physiopathology , Vision Disorders/etiology , Adult , Age of Onset , Aged , Ataxin-7 , Brain/metabolism , Female , Humans , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Male , Middle Aged , Nerve Tissue Proteins/metabolism , Pedigree , Retina/metabolism , Spinocerebellar Ataxias/complications
4.
Biochem Biophys Res Commun ; 354(3): 707-11, 2007 Mar 16.
Article En | MEDLINE | ID: mdl-17254549

Parkinson's disease (PD) is, at the neuropathological level, characterized by the accumulation of misfolded proteins. The presence of misfolded proteins can trigger a cellular stress response in the endoplasmic reticulum (ER) called the Unfolded Protein Response (UPR). The UPR has been shown to be involved in cellular models for PD. In this study, we investigated UPR activation in the substantia nigra of control and PD patients. Immunoreactivity for the UPR activation markers phosphorylated pancreatic ER kinase (pPERK) and phosphorylated eukaryotic initiation factor 2alpha (peIF2alpha) is detected in neuromelanin containing dopaminergic neurons in the substantia nigra of PD cases but not in control cases. In addition, pPERK immunoreactivity is colocalized with increased alpha-synuclein immunoreactivity in dopaminergic neurons. These data show that the UPR is activated in PD and that UPR activation is closely associated with the accumulation and aggregation of alpha-synuclein.


Eukaryotic Initiation Factor-2/chemistry , Melanins/metabolism , Parkinson Disease/metabolism , Protein Folding , alpha-Synuclein/metabolism , eIF-2 Kinase/chemistry , Dopamine/metabolism , Endoplasmic Reticulum/metabolism , Eukaryotic Initiation Factor-2/metabolism , Humans , Immunochemistry , Pancreas/pathology , Parkinson Disease/pathology , Phosphorylation , Substantia Nigra/metabolism , Substantia Nigra/pathology , Time Factors , eIF-2 Kinase/metabolism
5.
Clin Neuropathol ; 25(6): 272-81, 2006.
Article En | MEDLINE | ID: mdl-17140157

OBJECTIVE: We analyzed the expression of the inflammatory mediators IL-1beta, IL-1ra, IL-6 and the transcription factors IRF-1 and C/EBPdelta (previously identified in a transgenic model of spinocerebellar ataxia type 3 (SCA3) by gene expression profiling) in the central nervous system of SCA3 patients in relation to neuronal cell loss and ataxin-3-positive neuronal intranuclear inclusions (NI), to identify a putative upregulation of cytokines or microglia in SCA3 brains and to investigate whether enhanced cytokine expression was a generalized event mediating neuronal dysfunction in SCA3. MATERIALS AND METHODS: Light- and electronmicroscopic immunohistochemistry was performed on SCA3 tissues derived from five patients from unrelated families with genetically confirmed diagnosis, and six individuals without a history of neurological or inflammatory disease. RESULTS: NI were found almost exclusively in brain regions that also showed neuronal cell loss, i.e. in pons and dentate nucleus neurons, rarely in putamen and thalamus, but not in cerebral or cerebellar cortex. NI displayed an irregular surface and were mostly attached to the nucleoli. Quantitative analysis of NI in the pons revealed an inverse relation of NI and cell loss, i.e. patients with more severe neuronal cell loss had a smaller proportion of neurons with NI. Thus, formation of NI is not necessarily an indicator of cell death but could exert a protective effect. We found increased expression of IL-1beta, IL-1ra, IL-6 and C/EBPdelta only in pons and dentate nucleus neurons and both in neurons with and without NI, suggesting that NI are not a prerequisite for transcriptional changes. CONCLUSIONS: Our data suggest that the selectively affected neuronal populations in SCA3 undergo a complex alteration of gene expression independent from the formation of NI.


Brain/pathology , Cytokines/metabolism , Intranuclear Inclusion Bodies/pathology , Machado-Joseph Disease/pathology , Neurons/pathology , Aged , Ataxin-3 , Biomarkers/metabolism , Brain/metabolism , Brain/physiopathology , CCAAT-Enhancer-Binding Protein-delta/metabolism , Cell Death/physiology , Cell Nucleus/metabolism , Cell Nucleus/pathology , Cytokines/genetics , Female , Gene Expression Regulation/physiology , Humans , Immunohistochemistry , Interferon Regulatory Factor-1/metabolism , Interleukin 1 Receptor Antagonist Protein/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Intranuclear Inclusion Bodies/genetics , Intranuclear Inclusion Bodies/metabolism , Machado-Joseph Disease/metabolism , Machado-Joseph Disease/physiopathology , Male , Microscopy, Immunoelectron , Middle Aged , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Nerve Degeneration/physiopathology , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism
6.
Neuropathol Appl Neurobiol ; 32(6): 635-49, 2006 Dec.
Article En | MEDLINE | ID: mdl-17083478

Dysphagia, which can lead to nutritional deficiencies, weight loss and dehydration, represents a risk factor for aspiration pneumonia. Although clinical studies have reported the occurrence of dysphagia in patients with spinocerebellar ataxia type 2 (SCA2), type 3 (SCA3), type 6 (SCA6) and type 7 (SCA7), there are neither detailed clinical records concerning the kind of ingestive malfunctions which contribute to dysphagia nor systematic pathoanatomical studies of brainstem regions involved in the ingestive process. In the present study we performed a systematic post mortem study on thick serial tissue sections through the ingestion-related brainstem nuclei of 12 dysphagic patients who suffered from clinically diagnosed and genetically confirmed spinocerebellar ataxias assigned to the CAG-repeat or polyglutamine diseases (two SCA2, seven SCA3, one SCA6 and two SCA7 patients) and evaluated their medical records. Upon pathoanatomical examination in all of the SCA2, SCA3, SCA6 and SCA7 patients, a widespread neurodegeneration of the brainstem nuclei involved in the ingestive process was found. The clinical records revealed that all of the SCA patients were diagnosed with progressive dysphagia and showed dysfunctions detrimental to the preparatory phase of the ingestive process, as well as the lingual, pharyngeal and oesophageal phases of swallowing. The vast majority of the SCA patients suffered from aspiration pneumonia, which was the most frequent cause of death in our sample. The findings of the present study suggest (i) that dysphagia in SCA2, SCA3, SCA6 and SCA7 patients may be associated with widespread neurodegeneration of ingestion-related brainstem nuclei; (ii) that dysphagic SCA2, SCA3, SCA6 and SCA7 patients may suffer from dysfunctions detrimental to all phases of the ingestive process; and (iii) that rehabilitative swallow therapy which takes specific functional consequences of the underlying brainstem lesions into account might be helpful in preventing aspiration pneumonia, weight loss and dehydration in SCA2, SCA3, SCA6 and SCA7 patients.


Brain Stem/pathology , Deglutition Disorders/complications , Nerve Degeneration/pathology , Spinocerebellar Ataxias/complications , Adult , Aged , Aged, 80 and over , Female , Humans , Immunohistochemistry , Male , Middle Aged
7.
J Neural Transm Suppl ; (70): 89-97, 2006.
Article En | MEDLINE | ID: mdl-17017514

Parkinson's disease (PD) is a multisystem disorder in which predisposed neuronal types in specific regions of the human peripheral, enteric, and central nervous systems become progressively involved. A staging procedure for the PD-related inclusion body pathology (i.e., Lewy neurites and Lewy bodies) in the brain proposes that the pathological process begins at two sites and progresses in a topographically predictable sequence in 6 stages. During stages 1-2, the inclusion body pathology remains confined to the medulla oblongata, pontine tegmentum, and anterior olfactory structures. In stages 3-4, the basal mid- and forebrain become the focus of the pathology and the illness reaches its symptomatic phase. In the final stages 5-6, the pathological process is seen in the association areas and primary fields of the neocortex. To date, we have staged a total of 301 autopsy cases, including 106 cases with incidental pathology and 176 clinically diagnosed PD cases. In addition, 163 age-matched controls were examined. 19 of the 301 cases with PD-related pathology displayed a pathological distribution pattern of Lewy neurites and Lewy bodies that diverged from the staging scheme described above. In these cases, olfactory structures and the amygdala were predominantly involved in the virtual absence of brain stem pathology. Most of the divergent cases (17/19) had advanced concomitant Alzheimer's disease-related neurofibrillary changes (stages IV-VI).


Parkinson Disease/complications , Parkinson Disease/pathology , Animals , Brain/pathology , Disease Progression , Humans , Neurofibrillary Tangles/pathology , alpha-Synuclein/metabolism
8.
Biochem Soc Trans ; 34(Pt 5): 738-42, 2006 Nov.
Article En | MEDLINE | ID: mdl-17052186

Neuronal homoeostasis requires a constant balance between biosynthetic and catabolic processes. Eukaryotic cells primarily use two distinct mechanisms for degradation: the proteasome and autophagy of aggregates by the lysosomes. We focused on the UPS (ubiquitin-proteasome system). As a result of molecular misreading, misframed UBB (ubiquitin B) (UBB+1) is generated. UBB+1 accumulates in the neuritic plaques and neurofibrillary tangles in all patients with AD (Alzheimer's disease) and in the neuronal and glial hallmarks of other tauopathies and in polyglutamine diseases such as Huntington's disease. UBB+1 is not present in synucleinopathies such as Parkinson's disease. We showed that UBB+1 causes UPS dysfunction, aggregation and apoptotic cell death. UBB+1 is also present in non-neurological cells, hepatocytes of the diseased liver and in muscles during inclusion body myositis. Other frequently occurring (age-related) diseases such as Type 2 (non-insulin-dependent) diabetes mellitus are currently under investigation. These findings point to the importance of the UPS in diseases and open new avenues for target identification of the main players of the UPS. Treatment of these diseases with tools (e.g. viral RNA interference constructs) to intervene with specific targets is the next step.


Frameshift Mutation , Genetic Diseases, Inborn/genetics , Proteins/genetics , Amino Acid Sequence , Humans , Molecular Sequence Data , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Transcription, Genetic , Ubiquitin/genetics
9.
Neurology ; 66(2 Suppl 1): S86-92, 2006 Jan 24.
Article En | MEDLINE | ID: mdl-16432153

Frameshift (+1) proteins such as APP(+1) and UBB(+1) accumulate in sporadic cases of Alzheimer disease (AD) and in older subjects with Down syndrome (DS). We investigated whether these proteins also accumulate at an early stage of neuropathogenesis in young DS individuals without neuropathology and in early-onset familial forms of AD (FAD), as well as in other tauopathies, such as Pick disease (PiD) or progressive supranuclear palsy (PSP). APP(+1) is present in many neurons and beaded neurites in very young cases of DS, which suggests that it is axonally transported. In older DS patients (>37 years), a mixed pattern of APP(+1) immunoreactivity was observed in healthy looking neurons and neurites, dystrophic neurites, in association with neuritic plaques, as well as neurofibrillary tangles. UBB(+1) immunoreactivity was exclusively present in AD type of neuropathology. A similar pattern of APP(+1) and UBB(+1) immunoreactivity was also observed for FAD and much less explicit in nondemented controls after the age of 51 years. Furthermore, we observed accumulation of +1 proteins in other types of tauopathies, such as PiD, frontotemporal dementia, PSP and argyrophylic grain disease. These data suggest that accumulation of +1 proteins contributes to the early stages of dementia and plays a pathogenic role in a number of diseases that involve the accumulation of tau.


Alzheimer Disease/genetics , Frameshift Mutation , Tauopathies/genetics , Adult , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Amino Acid Substitution , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Cerebral Cortex/chemistry , Cerebral Cortex/ultrastructure , Down Syndrome/genetics , Down Syndrome/metabolism , Female , Genes, Dominant , Hippocampus/chemistry , Hippocampus/ultrastructure , Humans , Immunoenzyme Techniques , Male , Membrane Proteins/genetics , Middle Aged , Nerve Degeneration/genetics , Nerve Degeneration/metabolism , Pedigree , Presenilin-1 , Tauopathies/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism
10.
J Neural Transm (Vienna) ; 113(7): 829-43, 2006 Jul.
Article En | MEDLINE | ID: mdl-16362839

Spinocerebellar ataxia type 4 (SCA4), also known as 'hereditary ataxia with sensory neuropathy', represents a very rare, progressive and untreatable form of an autosomal dominant inherited cerebellar ataxia (ADCA). Due to a lack of autopsy cases, no neuropathological or clinicopathological studies had yet been performed in SCA4. In the present study, the first available cerebellar and brainstem tissue of a clinically diagnosed and genetically-confirmed German SCA4 patient was pathoanatomically studied using serial thick sections. During this systematic postmortem investigation, along with an obvious demyelinization of cerebellar and brainstem fiber tracts we observed widespread cerebellar and brainstem neurodegeneration with marked neuronal loss in the substantia nigra and ventral tegmental area, central raphe and pontine nuclei, all auditory brainstem nuclei, in the abducens, principal trigeminal, spinal trigeminal, facial, superior vestibular, medial vestibular, interstitial vestibular, dorsal motor vagal, hypoglossal, and prepositus hypoglossal nuclei, as well as in the nucleus raphe interpositus, all dorsal column nuclei, and in the principal and medial subnuclei of the inferior olive. Severe neuronal loss was seen in the Purkinje cell layer of the cerebellum, in the cerebellar fastigial nucleus, in the red, trochlear, lateral vestibular, and lateral reticular nuclei, the reticulotegmental nucleus of the pons, and the nucleus of Roller. In addition, immunocytochemical analysis using the anti-polyglutamine antibody 1C2 failed to detect any polyglutamine-related immunoreactivity in the central nervous regions of this SCA4 patient studied. In view of the known functional role of affected nuclei and related fiber tracts, the present findings not only offer explanations for the well-known disease symptoms of SCA4 patients (i.e. ataxic symptoms, dysarthria and somatosensory deficits), but for the first time help to explain why diplopia, gaze-evoked nystagmus, auditory impairments and pathologically altered brainstem auditory evoked potentials, saccadic smooth pursuits, impaired somatosensory functions in the face, and dysphagia may occur during the course of SCA4. Finally, the results of our immunocytochemical studies support the concept that SCA4 is not a member of the CAG-repeat or polyglutamine diseases.


Brain Stem/pathology , Cerebellum/pathology , Nerve Degeneration/pathology , Neurons/pathology , Spinocerebellar Ataxias/pathology , Aged , Auditory Diseases, Central/genetics , Auditory Diseases, Central/pathology , Auditory Diseases, Central/physiopathology , Brain Stem/physiopathology , Cerebellum/physiopathology , DNA Mutational Analysis , Deglutition Disorders/genetics , Deglutition Disorders/pathology , Deglutition Disorders/physiopathology , Female , Genotype , Germany , Humans , Immunohistochemistry , Male , Middle Aged , Mutation/genetics , Nerve Degeneration/physiopathology , Ocular Motility Disorders/genetics , Ocular Motility Disorders/pathology , Ocular Motility Disorders/physiopathology , Pedigree , Peptides/genetics , Sensation Disorders/genetics , Sensation Disorders/pathology , Sensation Disorders/physiopathology , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/physiopathology , Trinucleotide Repeat Expansion/genetics
11.
Acta Neuropathol ; 109(6): 617-31, 2005 Jun.
Article En | MEDLINE | ID: mdl-15906049

Although the cranial nerves, their nuclei and related fiber tracts are crucial for a variety of oculomotor, somatomotor, somatosensory, auditory, vestibular-related, autonomic and ingestion-related functions, knowledge regarding the extent of their involvement in spinocerebellar ataxia type 2 (SCA2) patients is incomplete. Accordingly, we performed a pathoanatomical analysis of these structures in six clinically diagnosed SCA2 patients. Unconventionally thick serial sections through the brainstem stained for lipofuscin pigment (aldehyde-fuchsin) and Nissl material (Darrow red) showed that all oculomotor, somatomotor, somatosensory, auditory, vestibular and autonomic cranial nerve nuclei may undergo neurodegeneration during SCA2. Similarly, examination of myelin-stained thick serial sections revealed that nearly all cranial nerves and associated fiber tracts may sustain atrophy and myelin loss in SCA2 patients. In view of the known functional role of the affected cranial nerves, their nuclei and associated fiber tracts, the present findings provide appropriate pathoanatomical explanations for some of the disease-related and unexplained symptoms seen in SCA2 patients: double vision, gaze palsy, slowing of saccades, ptosis, ingestion-related malfunctions, impairments of the optokinetic nystagmus and the vestibulo-ocular reaction, facial and tongue fasciculation-like movements, impaired centripetal transmission of temperature-related information from the face, dystonic posture of the neck, as well as abnormalities of the brainstem auditory evoked potentials.


Brain Stem/pathology , Cranial Nerves/pathology , Spinocerebellar Ataxias/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Nerve Degeneration/pathology , Spinocerebellar Ataxias/physiopathology
12.
Neurology ; 64(8): 1404-10, 2005 Apr 26.
Article En | MEDLINE | ID: mdl-15851731

OBJECTIVE: To study the association of cognitive status with the stages of a published neuropathologic staging procedure for sporadic Parkinson disease (PD) in a cohort of 88 patients with PD from a single neurologic unit. None had received the clinical diagnosis of dementia with Lewy bodies (DLB). METHODS: The authors assessed Lewy neurites/bodies (LNs/LBs) immunoreactive for alpha-synuclein semiquantitatively in sections from 18 brain regions. In silver-stained sections and sections immunostained for tau and beta-amyloid protein, the authors semiquantitatively evaluated comorbidities potentially contributing to cognitive decline, e.g., Alzheimer disease (AD), argyrophilic grain disease (AGD), and cerebral vascular disease. The authors analyzed four Mini-Mental State Examination (MMSE) subgroups ranging from marginally impaired cognition to severe dementia using nonparametric tests. RESULTS: It was possible to assign all patients to one of the PD stages. MMSE scores correlated with neuropathologic stages (p < 0.005) and this association showed a linear trend (p < 0.025). Median MMSE test scores for women were lower than those for men. Cognitively impaired individuals displayed higher stages of AD-related neurofibrillary pathology (p < 0.05) and beta-amyloid deposition (p < 0.05) than cognitively unimpaired persons. MMSE scores did not correlate significantly with AGD, disease duration, age at disease onset, or age at death. Hoehn and Yahr scores, however, correlated with PD stages (p < 0.0005) and MMSE scores (p < 0.0005). CONCLUSIONS: The decrease in median Mini-Mental State Examination scores between PD stages 3 to 6 indicates that the risk of developing dementia increases with disease progression. In some individuals, however, cognitive decline can develop in the presence of mild Parkinson disease-related cortical pathology and, conversely, widespread cortical lesions do not necessarily lead to cognitive decline.


Brain/pathology , Cognition Disorders/etiology , Cognition Disorders/pathology , Parkinson Disease/complications , Parkinson Disease/pathology , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Brain/metabolism , Brain/physiopathology , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Cerebrovascular Disorders/pathology , Cerebrovascular Disorders/physiopathology , Cognition Disorders/psychology , Cohort Studies , Disease Progression , Female , Humans , Lewy Bodies/pathology , Male , Neurofibrillary Tangles/pathology , Neuropsychological Tests , Parkinson Disease/psychology , Plaque, Amyloid/pathology , Predictive Value of Tests , Prognosis , Prospective Studies , Risk Factors , Severity of Illness Index , Sex Factors
13.
J Neural Transm (Vienna) ; 112(11): 1523-45, 2005 Nov.
Article En | MEDLINE | ID: mdl-15785863

The pre-cerebellar nuclei act as a gate for the entire neocortical, brainstem and spinal cord afferent input destined for the cerebellum. Since no pathoanatomical studies of these nuclei had yet been performed in spinocerebellar ataxia type 2 (SCA2) or type 3 (SCA3), we carried out a detailed postmortem study of the pre-cerebellar nuclei in six SCA2 and seven SCA3 patients in order to further characterize the extent of brainstem degeneration in these ataxic disorders. By means of unconventionally thick serial sections through the brainstem stained for lipofuscin pigment and Nissl material, we could show that all of the pre-cerebellar nuclei (red, pontine, arcuate, prepositus hypoglossal, superior vestibular, lateral vestibular, medial vestibular, interstitial vestibular, spinal vestibular, vermiform, lateral reticular, external cuneate, subventricular, paramedian reticular, intercalate, interfascicular hypoglossal, and conterminal nuclei, pontobulbar body, reticulotegmental nucleus of the pons, inferior olive, and nucleus of Roller) are among the targets of both of the degenerative processes underlying SCA2 and SCA3. These novel findings are in contrast to the current neuropathological literature, which assumes that only a subset of pre-cerebellar nuclei in SCA2 and SCA3 may undergo neurodegeneration. Widespread damage to the pre-cerebellar nuclei separates all three phylogenetically and functionally defined regions of the cerebellum, impairs their physiological functions and thus explains the occurrence of gait, stance, limb and truncal ataxia, dysarthria, truncal and postural instability with disequilibrium, impairments of the vestibulo-ocular reaction and optokinetic nystagmus, slowed and saccadic smooth pursuits, dysmetrical horizontal saccades, and gaze-evoked nystagmus during SCA2 and SCA3.


Brain Stem/pathology , Cerebellum/pathology , Machado-Joseph Disease/diagnosis , Nerve Degeneration/diagnosis , Neural Pathways/pathology , Spinocerebellar Ataxias/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Brain Stem/physiopathology , Cerebellum/physiopathology , Female , Gliosis/diagnosis , Gliosis/physiopathology , Humans , Immunohistochemistry , Machado-Joseph Disease/physiopathology , Male , Middle Aged , Nerve Degeneration/physiopathology , Neural Pathways/physiopathology , Neurons/pathology , Olivary Nucleus/pathology , Olivary Nucleus/physiopathology , Red Nucleus/pathology , Red Nucleus/physiopathology , Reticular Formation/pathology , Reticular Formation/physiopathology , Spinocerebellar Ataxias/physiopathology , Staining and Labeling , Vestibular Nuclei/pathology , Vestibular Nuclei/physiopathology
16.
Brain Pathol ; 15(4): 287-95, 2005 Oct.
Article En | MEDLINE | ID: mdl-16389941

Spinocerebellar ataxia type 7 (SCA7) represents a very rare and severe autosomal dominantly inherited cerebellar ataxia (ADCA). It belongs to the group of CAG-repeat or polyglutamine diseases with its underlying molecular genetical defect on chromosome 3p12-p21.1. Here, we performed a systematic study of the neuropathology on unconventional thick serial sections of the first available brain tissue of a genetically confirmed late-onset SCA7 patient with a very short CAG-repeat expansion. Along with myelin pallor of a variety of central nervous fiber tracts, we observed i) neurodegeneration in select areas of the cerebral cortex, and ii) widespread nerve cell loss in the cerebellum, thalamus, nuclei of the basal ganglia, and brainstem. In addition, upon immunocytochemical analysis using the anti-polyglutamine antibody 1C2, immunopositive neuronal intranuclear inclusions bodies (NI) were observed in all cerebellar regions, in all parts of the cerebral cortex, and in telencephalic and brainstem nuclei, irrespective of whether they underwent neurodegeneration. These novel findings provide explanations for a variety of clinical symptoms and paraclinical findings of both our and other SCA7 patients. Finally, our immunocytochemical analysis confirms previous studies which described the presence of NI in obviously degenerated brain and retinal regions as well as in apparently well-preserved brain regions and retina of SCA7 patients.


Brain/pathology , Spinocerebellar Ataxias/pathology , Aged , Female , Humans , Immunohistochemistry , Nerve Degeneration/pathology , Retina/pathology , Spinocerebellar Ataxias/genetics , Trinucleotide Repeat Expansion
17.
Neurology ; 63(7): 1258-63, 2004 Oct 12.
Article En | MEDLINE | ID: mdl-15477548

BACKGROUND: The reticulotegmental nucleus of the pons (RTTG) is among the precerebellar nuclei of the human brainstem. Although it represents an important component of the oculomotor circuits crucial for the accuracy of horizontal saccades and the generation of horizontal smooth pursuits, the RTTG has never been considered in CAG repeat or polyglutamine diseases. METHODS: Thick serial sections through the RTTG of 10 patients with spinocerebellar ataxias (SCAs) assigned to the CAG repeat or polyglutamine diseases (2 SCA-1 patients, 4 SCA-2 patients, and 4 SCA-3 patients) were stained for neuronal lipofuscin pigment and Nissl material. RESULTS: The unconventionally thick tissue sections revealed the hitherto overlooked involvement of the RTTG in the degenerative processes underlying SCA-1, SCA-2, and SCA-3, whereby in one of the SCA-1 patients, in two of the SCA-2 patients, and in all of the SCA-3 patients, the RTTG underwent a conspicuous loss of its nerve cells. CONCLUSIONS: Neurodegeneration may not only affect the cranial nerve nuclei (i.e., oculomotor and abducens nuclei) of SCA-1, SCA-2 and SCA-3 patients integrated into the circuits, subserving accuracy of horizontal saccades and the generation of horizontal smooth pursuits, but likewise involves the premotor networks of these circuits. This may explain why the SCA-1, SCA-2, and SCA-3 patients in this study with a heavily damaged reticulotegmental nucleus of the pons developed dysmetric horizontal saccades and impaired smooth pursuits during the course of the disease.


Pons/pathology , Spinocerebellar Ataxias/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Cerebral Cortex/pathology , Female , Humans , Machado-Joseph Disease/pathology , Male , Middle Aged , Neurons/pathology , Pursuit, Smooth , Saccades , Spinocerebellar Ataxias/physiopathology , Supranuclear Palsy, Progressive/pathology
18.
Neuropathol Appl Neurobiol ; 30(4): 402-14, 2004 Aug.
Article En | MEDLINE | ID: mdl-15305986

Although the vestibular complex represents an important component of the neural circuits crucial for the maintenance of truncal and postural stability, and it is integrated into specialized oculomotor circuits, knowledge regarding the extent of the involvement of its nuclei and associated fibre tracts in cases with spinocerebellar ataxia type 3 (SCA3) is incomplete. Accordingly, we performed a pathoanatomical analysis of the vestibular complex and its associated fibre tracts in four clinically diagnosed and genetically confirmed SCA3 patients with the aim of providing more exact information as to the involvement of the vestibular system in this disorder. By means of unconventionally thick serial sections through the vestibular nuclei stained for lipofuscin pigment and Nissl material, we could show that all five nuclei of this complex (interstitial, lateral, medial, spinal, and superior vestibular nuclei) are subject to neurodegenerative processes in SCA3, whereby examination of thick serial sections stained for myelin revealed that all associated fibre tracts (ascending tract of Deiters, juxtarestiform body, lateral and medial vestibulospinal tracts, medial longitudinal fascicle, vestibular portion of the eighth cranial nerve) underwent atrophy and demyelinization in all four of the patients studied. The reported lesions can help to explain the truncal and postural instability as well as the impaired optokinetic nystagmus, vestibulo-ocular reaction, and horizontal gaze-holding present in SCA3 cases.


Machado-Joseph Disease/pathology , Nerve Degeneration/pathology , Vestibule, Labyrinth/pathology , Age of Onset , Aged , Astrocytes/pathology , Female , Humans , Machado-Joseph Disease/genetics , Machado-Joseph Disease/physiopathology , Male , Middle Aged , Nerve Fibers/pathology , Neural Pathways/pathology , Silver Staining , Tissue Fixation , Trinucleotide Repeats/genetics , Vestibular Nuclei/pathology , Vestibule, Labyrinth/physiopathology
19.
Neurobiol Aging ; 25(9): 1253-62, 2004 Oct.
Article En | MEDLINE | ID: mdl-15312971

Dopamine (DA) autooxidation, and consequent formation of neurotoxic DA-derived quinones and reactive oxygen species, has been implicated in dopaminergic cell death and, hence, in the pathogenesis of Parkinson's disease (PD). Stimulation of pathways involved in the detoxication of DA-quinones in the brain is hypothesized to be an effective means to limit oxidative stress and to confer neuroprotection in PD. In this respect, the inducible flavoprotein NAD(P)H:quinone oxidoreductase (NQO1) is of particular interest as it is directly implicated in the detoxication of DA-quinones and, in addition, has broad spectrum anti-oxidant properties. To study the potential pathophysiological role of NQO1 in PD, the cellular expression of NQO1 was examined in the mesencephalon of PD patients and age-matched controls. In the substantia nigra pars compacta (SNpc), NQO1 was found to be expressed in astroglial and endothelial cells and, albeit less frequently, also in dopaminergic neurons. Moreover, while overt NQO1 immunoreactivity was absent in the surrounding nervous tissue, in the Parkinsonian SNpc a marked increase in the astroglial and neuronal expression of NQO1 was consistently observed.


Dopamine/metabolism , NAD(P)H Dehydrogenase (Quinone)/metabolism , Oxidative Stress/physiology , Parkinson Disease/enzymology , Reactive Oxygen Species/metabolism , Substantia Nigra/enzymology , Adult , Aged , Aged, 80 and over , Astrocytes/enzymology , Astrocytes/pathology , Endothelium, Vascular/enzymology , Endothelium, Vascular/pathology , Female , Humans , Male , Middle Aged , Neurons/enzymology , Neurons/pathology , Parkinson Disease/pathology , Parkinson Disease/physiopathology , Substantia Nigra/pathology , Substantia Nigra/physiopathology
20.
Neuropathol Appl Neurobiol ; 29(5): 418-33, 2003 Oct.
Article En | MEDLINE | ID: mdl-14507334

Dysfunctions of the somatosensory system are among the clinical signs that characterize a variety of polyglutamine or CAG-repeat diseases. Deficits within this system may hinder the perception of potential threats, be detrimental to somatomotor functions, and result in uncoordinated movements, ataxia, and falls. Despite the considerable clinical relevance of such deficits, however, no systematic pathoanatomical studies of the central somatosensory system in polyglutamine diseases are currently available. The present paper has two goals: (1) recommendation of an economical tissue sampling method and optimized histological processing of this tissue to allow rapid and reliable evaluation of the structural integrity of all known relay stations and interconnecting fibre tracts within this complex system, and (2) the proposal of guidelines for a rapid and detailed pathoanatomical investigative procedure of the human central somatosensory system. In so doing, we draw on the current state of neuroanatomic research and apply the methods and guidelines proposed here to a 25-year-old female patient with spinocerebellar ataxia type 2 (SCA2). The use of 100 microm serial sections through the SCA2 patient's central somatosensory components showed that obvious neuronal loss occurred in nearly all of the relay stations of this system (Clarke's column; cuneate, external cuneate and gracile nuclei; spinal, principal and mesencephalic trigeminal nuclei; ventral posterior lateral and ventral posterior medial nuclei of the thalamus), whereas the majority of interconnecting fibre tracts (dorsal spinocerebellar tract; cuneate and gracile fascicles; medial lemniscus; spinal trigeminal tract, trigeminal nerve and mesencephalic trigeminal tract) displayed signs of atrophy accompanied by demyelinization. These pathological findings suffice to explain the patient's impaired senses of vibration, position and temperature. Moreover, together with the lesions seen in the motor cerebellothalamocortical feedback loop (pontine nuclei, deep cerebellar nuclei and cerebellar cortex, ventral lateral nucleus of the thalamus), they also account for the somatomotor deficits that were observed in the young woman (gait, stance, and limb ataxia, falls, and impaired writing). In proposing these new guidelines, we hope to enable others to study the hitherto unknown morphological counterparts of somatosensory dysfunctions in additional CAG-repeat disease patients.


Pathology/standards , Somatosensory Cortex/anatomy & histology , Somatosensory Cortex/pathology , Specimen Handling/methods , Spinocerebellar Ataxias/pathology , Adult , Female , Humans , Spinocerebellar Ataxias/physiopathology
...