Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 13(14): 9756-9760, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36994086

RESUMEN

A novel miniaturized sensor for electrochemical detection that contains graphene- and gold nanoparticles was functionalized with proteins. Using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) it was possible to observe and quantify interactions of molecules with these proteins. The protein binders included carbohydrate ligands as small as carbohydrates up to COVID-19 spike protein variants engaged in protein-protein interactions. The system uses off-the-shelf sensors combined with an affordable potentiostat and yet is sensitive enough for small ligand binding.

2.
ChemSusChem ; 15(22): e202201308, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36111965

RESUMEN

[Co(HBMIMPh2 )2 ](BF4 )2 (1) [HBMIMPh2 =bis(1-methyl-4,5-diphenyl-1H-imidazol-2-yl)methane] was investigated for its electrocatalytic hydrogen evolution performance in DMF using voltammetry and during controlled potential/current electrolysis (CPE/CCE) in a novel in-line product detection setup. Performances were benchmarked against three reported molecular cobalt hydrogen evolution reaction (HER) electrocatalysts, [Co(dmgBF2 )2 (solv)2 ] (2) (dmgBF2 =difluoroboryldimethylglyoximato), [Co(TPP)] (3) (TPP=5,10,15,20-tetraphenylporphyrinato), and [Co(bapbpy)Cl](Cl) (4) [bapbpy=6,6'-bis-(2-aminopyridyl)-2,2'-bipyridine], showing distinct performances differences with 1 being the runner up in H2 evolution during CPE and the best catalyst in terms of overpotential and Faradaic efficiency during CCE. After bulk electrolysis, for all of the complexes, a deposit on the glassy carbon electrode was observed, and post-electrolysis X-ray photoelectron spectroscopy (XPS) analysis of the deposit formed from 1 demonstrated only a minor cobalt contribution (0.23 %), mainly consisting of Co2+ . Rinse tests on the deposits derived from 1 and 2 showed that the initially observed distinct activity was (partly) preserved for the deposits. These observations indicate that the molecular design of the complexes dictates the features of the formed deposit and therewith the observed activity.

3.
Chem Sci ; 13(7): 2094-2104, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35308864

RESUMEN

Several metalloenzymes, including [FeFe]-hydrogenase, employ cofactors wherein multiple metal atoms work together with surrounding ligands that mediate heterolytic and concerted proton-electron transfer (CPET) bond activation steps. Herein, we report a new dinucleating PNNP expanded pincer ligand, which can bind two low-valent iron atoms in close proximity to enable metal-metal cooperativity (MMC). In addition, reversible partial dearomatization of the ligand's naphthyridine core enables both heterolytic metal-ligand cooperativity (MLC) and chemical non-innocence through CPET steps. Thermochemical and computational studies show how a change in ligand binding mode can lower the bond dissociation free energy of ligand C(sp3)-H bonds by ∼25 kcal mol-1. H-atom abstraction enabled trapping of an unstable intermediate, which undergoes facile loss of two carbonyl ligands to form an unusual paramagnetic (S = ) complex containing a mixed-valent iron(0)-iron(i) core bound within a partially dearomatized PNNP ligand. Finally, cyclic voltammetry experiments showed that these diiron complexes show catalytic activity for the electrochemical hydrogen evolution reaction. This work presents the first example of a ligand system that enables MMC, heterolytic MLC and chemical non-innocence, thereby providing important insights and opportunities for the development of bimetallic systems that exploit these features to enable new (catalytic) reactivity.

4.
J Org Chem ; 83(2): 1000-1010, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29231724

RESUMEN

Structural modification of the tetrahydroisoquinoline (THIQ) framework is of significant interest to organic chemists due to its central role in heterocyclic and medicinal chemistry. Here we demonstrate an efficient metal-free method for the oxidative functionalization of THIQs at the C1 position, which is amenable to a diverse range of C-C coupling reactions. These reactions proceed through a hydride abstraction involving the tropylium ion followed by quenching the generated iminium intermediates with nucleophiles to afford THIQ derivatives with excellent efficiencies and interesting selectivities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...