RESUMEN
Pancreatic ßcells are the only cells that synthesize insulin to regulate blood glucose levels. Various conditions can affect the mass of pancreatic ßcells and decrease insulin levels. Diabetes mellitus is a disease characterized by insulin resistance and chronic hyperglycemia, mainly due to the loss of pancreatic ßcells caused by an increase in the rate of apoptosis. Additionally, hyperglycemia has a toxic effect on ßcells. Although the precise mechanism of glucotoxicity is not fully understood, several mechanisms have been proposed. The most prominent changes are increases in reactive oxygen species, the loss of mitochondrial membrane potential and the activation of the intrinsic pathway of apoptosis due to p53. The present review analyzed the location of p53 in the cytoplasm, mitochondria and nucleus in terms of posttranslational modifications, including phosphorylation, OGlcNAcylation and polyADPribosylation, under hyperglycemic conditions. These modifications protect p53 from degradation by the proteasome and, in turn, enable it to regulate the intrinsic pathway of apoptosis through the regulation of antiapoptotic and proapoptotic elements. Degradation of p53 occurs in the proteasome and depends on its ubiquitination by Mdm2. Understanding the mechanisms that activate the death of pancreatic ßcells will allow the proposal of treatment alternatives to prevent the decrease in pancreatic ßcells.
Asunto(s)
Apoptosis , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Procesamiento Proteico-Postraduccional , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , AnimalesRESUMEN
The classic enzymatic function of acetylcholinesterase (AChE) is the hydrolysis of acetylcholine (ACh) in the neuronal synapse. However, AChE is also present in nonneuronal cells such as lymphocytes. Various studies have proposed the participation of AChE in the development of cancer. The ACHE gene produces three mRNAs (T, H and R). AChE-T encodes amphiphilic monomers, dimers, tetramers (G1 A, G2 A and G4 A) and hydrophilic tetramers (G4 H). AChE-H encodes amphiphilic monomers and dimers (G1 A and G2 A). AChE-R encodes a hydrophilic monomer (G1 H). The present study considered the differences in the mRNA expression (T, H and R) and protein levels of AChE, as well as the molecular forms of AChE, the glycosylation pattern and the enzymatic activity of AChE present in normal T lymphocytes and leukemic Jurkat E6-1 cells. The results revealed that AChE enzymatic activity was higher in normal T lymphocytes than in Jurkat cells. Normal T cells expressed AChE-H transcripts, whereas Jurkat cells expressed AChE-H and AChE-T. The molecular forms identified in normal T cells were G2 A (5.2 S) and G1 A (3.5 S), whereas those in Jurkat cells were G2 A (5.2 S), G1 A (3.5 S) and G4 H (10.6S). AChE in Jurkat cells showed altered posttranslational maturation since a decrease in the incorporation of galactose and sialic acid into its structure was observed. In conclusion, the content and composition of AChE were altered in Jurkat cells compared with those in normal T lymphocytes. The present study opened new avenues for exploring the development of novel therapeutic strategies against T-cell leukemia and for identifying potential molecular targets for the early detection of this type of cancer.
RESUMEN
Cancer involves a series of diseases where cellular growth is not controlled. Cancer is a leading cause of death worldwide, and the burden of cancer incidence and mortality is rapidly growing, mainly in developing countries. Many drugs are currently used, from chemotherapeutic agents to immunotherapy, among others, along with organ transplantation. Treatments can cause severe side effects, including remission and progression of the disease with serious consequences. Increased glycolytic activity is characteristic of cancer cells. Triosephosphate isomerase is essential for net ATP production in the glycolytic pathway. Notably, some post-translational events have been described that occur in human triosephosphate isomerase in which functional and structural alterations are provoked. This is considered a window of opportunity, given the differences that may exist between cancer cells and their counterpart in normal cells concerning the glycolytic enzymes. Here, we provide elements that bring out the potential of triosephosphate isomerase, under post-translational modifications, to be considered an efficacious target for treating cancer.
Asunto(s)
Neoplasias , Triosa-Fosfato Isomerasa , Humanos , Triosa-Fosfato Isomerasa/genética , Neoplasias/tratamiento farmacológico , Procesamiento Proteico-Postraduccional , Ciclo Celular , Proliferación CelularRESUMEN
Beyond the problem in public health that protist-generated diseases represent, understanding the variety of mechanisms used by these parasites to interact with the human immune system is of biological and medical relevance. Giardia lamblia is an early divergent eukaryotic microorganism showing remarkable pathogenic strategies for evading the immune system of vertebrates. Among various multifunctional proteins in Giardia, arginine deiminase is considered an enzyme that plays multiple regulatory roles during the life cycle of this parasite. One of its most important roles is the crosstalk between the parasite and host. Such a molecular "chat" is mediated in human cells by membrane receptors called Toll-like receptors (TLRs). Here, we studied the importance of the 3D structure of giardial arginine deiminase (GlADI) to immunomodulate the human immune response through TLRs. We demonstrated the direct effect of GlADI on human TLR signaling. We predicted its mode of interaction with TLRs two and four by using the AlphaFold-predicted structure of GlADI and molecular docking. Furthermore, we showed that the immunomodulatory capacity of this virulent factor of Giardia depends on the maintenance of its 3D structure. Finally, we also showed the influence of this enzyme to exert specific responses on infant-like dendritic cells.
Asunto(s)
Giardia , Giardiasis , Animales , Humanos , Hidrolasas , Inmunidad , Inmunomodulación , Simulación del Acoplamiento Molecular , Receptores Toll-LikeRESUMEN
Human triosephosphate isomerase (HsTIM) is a central glycolytic enzyme and is overexpressed in cancer cells with accelerated glycolysis. Triple-negative breast cancer is highly dependent on glycolysis and is typically treated with a combination of surgery, radiation therapy, and chemotherapy. Deamidated HsTIM was recently proposed as a druggable target. Although thiol-reactive drugs affect cell growth in deamidated HsTIM-complemented cells, the role of this protein as a selective target has not been demonstrated. To delve into the usefulness of deamidated HsTIM as a selective target, we assessed its natural accumulation in breast cancer cells. We found that deamidated HsTIM accumulates in breast cancer cells but not in noncancerous cells. The cancer cells are selectively programmed to undergo cell death with thiol-reactive drugs that induced the production of methylglyoxal (MGO) and advanced glycation-end products (AGEs). In vivo, a thiol-reactive drug effectively inhibits the growth of xenograft tumors with an underlying mechanism involving deamidated HsTIM. Our findings demonstrate the usefulness of deamidated HsTIM as target to develop new therapeutic strategies for the treatment of cancers and other pathologies in which this post translationally modified protein accumulates.
Asunto(s)
Neoplasias de la Mama , Triosa-Fosfato Isomerasa , Femenino , Glucólisis , Humanos , Proteínas/metabolismo , Piruvaldehído/metabolismo , Compuestos de Sulfhidrilo , Triosa-Fosfato Isomerasa/metabolismoRESUMEN
Giardiasis represents a latent problem in public health due to the exceptionally pathogenic strategies of the parasite Giardia lamblia for evading the human immune system. Strains resistant to first-line drugs are also a challenge. Therefore, new antigiardial therapies are urgently needed. Here, we tested giardial arginine deiminase (GlADI) as a target against giardiasis. GlADI belongs to an essential pathway in Giardia for the synthesis of ATP, which is absent in humans. In silico docking with six thiol-reactive compounds was performed; four of which are approved drugs for humans. Recombinant GlADI was used in enzyme inhibition assays, and computational in silico predictions and spectroscopic studies were applied to follow the enzyme's structural disturbance and identify possible effective drugs. Inhibition by modification of cysteines was corroborated using Ellman's method. The efficacy of these drugs on parasite viability was assayed on Giardia trophozoites, along with the inhibition of the endogenous GlADI. The most potent drug against GlADI was assayed on Giardia encystment. The tested drugs inhibited the recombinant GlADI by modifying its cysteines and, potentially, by altering its 3D structure. Only rabeprazole and omeprazole decreased trophozoite survival by inhibiting endogenous GlADI, while rabeprazole also decreased the Giardia encystment rate. These findings demonstrate the potential of GlADI as a target against giardiasis.
Asunto(s)
Giardia lamblia/efectos de los fármacos , Giardiasis/tratamiento farmacológico , Hidrolasas/metabolismo , Animales , Antiprotozoarios/farmacología , Simulación por Computador , Cisteína/química , Evaluación Preclínica de Medicamentos/métodos , Reposicionamiento de Medicamentos/métodos , Giardia lamblia/patogenicidad , Giardiasis/inmunología , Tiomalato Sódico de Oro/farmacología , Humanos , Hidrolasas/efectos de los fármacos , Hidrolasas/ultraestructura , Omeprazol/farmacología , Inhibidores de la Bomba de Protones/farmacología , Rabeprazol , Tiamina/análogos & derivados , Tiamina/farmacología , Trofozoítos/efectos de los fármacosRESUMEN
Delivery methods during childbirth and their related gut microbiota profiles have important impacts on health later in life, they can contribute to the development of diseases such as obesity, whose highest prevalence rate is found among the Mexican child population. Coincidentally, Mexico has one of the highest global average annual rate increase in cesarean births (C-section). Since Mexico leads the world in childhood obesity, studying the relationship between childbirth delivery methods and gut microbiota profiles in this vulnerable population may be used to identify early risk factors for obesity in other developed and developing countries. The objective of this study is to determine the association between child delivery method and gut microbiota profiles in healthy Mexican newborns.Fecal samples of 57 term infants who participated in a randomized clinical trial in 2013 to study the safety of Agave fructans in newborns, were used in this study. DNA samples were extracted and used to characterize the microbiota composition using high-throughput 16S rRNA gene sequencing. The samples were further divided based on childbirth delivery method, as well as early diet. Gut microbiota profiles were determined and analyzed using cluster analysis followed by multiple correspondence analysis.An unusual high abundance of Proteobacteria was found in the gut microbiota of all Mexican infants studied, regardless of delivery method. Feces from infants born by C-section had low levels of Bacteroidetes, high levels of Firmicutes, especially Clostridium and Enterococcus, and a strikingly high ratio of Firmicutes/Bacteroidetes (F:B). Profiles enriched in Bacteroidetes and low F:B ratios, were strongly associated with vaginal delivery.The profile of gut microbiota associated with feces from Mexican infants born by C-section, may be added to the list of boosting factors for the worrying obesity epidemic in Mexico.
Asunto(s)
Cesárea/estadística & datos numéricos , Microbioma Gastrointestinal , Obesidad/epidemiología , Cesárea/efectos adversos , Heces/microbiología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , México/epidemiología , Factores de RiesgoRESUMEN
Therapeutic strategies for the treatment of any severe disease are based on the discovery and validation of druggable targets. The human genome encodes only 600-1500 targets for small-molecule drugs, but posttranslational modifications lead to a considerably larger druggable proteome. The spontaneous conversion of asparagine (Asn) residues to aspartic acid or isoaspartic acid is a frequent modification in proteins as part of the process called deamidation. Triosephosphate isomerase (TIM) is a glycolytic enzyme whose deamidation has been thoroughly studied, but the prospects of exploiting this phenomenon for drug design remain poorly understood. The purpose of this study is to demonstrate the properties of deamidated human TIM (HsTIM) as a selective molecular target. Using in silico prediction, in vitro analyses, and a bacterial model lacking the tim gene, this study analyzed the structural and functional differences between deamidated and nondeamidated HsTIM, which account for the efficacy of this protein as a druggable target. The highly increased permeability and loss of noncovalent interactions of deamidated TIM were found to play a central role in the process of selective enzyme inactivation and methylglyoxal production. This study elucidates the properties of deamidated HsTIM regarding its selective inhibition by thiol-reactive drugs and how these drugs can contribute to the development of cell-specific therapeutic strategies for a variety of diseases, such as COVID-19 and cancer.
Asunto(s)
Infecciones por Coronavirus/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Neoplasias/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Triosa-Fosfato Isomerasa/antagonistas & inhibidores , Amidas/antagonistas & inhibidores , Amidas/metabolismo , COVID-19 , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Mutación , Pandemias , Proteoma/antagonistas & inhibidores , Proteoma/genética , Proteoma/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Triosa-Fosfato Isomerasa/química , Triosa-Fosfato Isomerasa/metabolismoRESUMEN
The microsporidia are a large group of intracellular parasites with a broad range of hosts, including humans. Encephalitozoon intestinalis is the second microsporidia species most frequently associated with gastrointestinal disease in humans, especially immunocompromised or immunosuppressed individuals, including children and the elderly. The prevalence reported worldwide in these groups ranges from 0 to 60%. Currently, albendazole is most commonly used to treat microsporidiosis caused by Encephalitozoon species. However, the results of treatment are variable, and relapse can occur. Consequently, efforts are being directed toward identifying more effective drugs for treating microsporidiosis, and the study of new molecular targets appears promising. These parasites lack mitochondria, and oxidative phosphorylation therefore does not occur, which suggests the enzymes involved in glycolysis as potential drug targets. Here, we have for the first time characterized the glycolytic enzyme triosephosphate isomerase of E. intestinalis at the functional and structural levels. Our results demonstrate the mechanisms of inactivation of this enzyme by thiol-reactive compounds. The most striking result of this study is the demonstration that established safe drugs such as omeprazole, rabeprazole and sulbutiamine can effectively inactivate this microsporidial enzyme and might be considered as potential drugs for treating this important disease.
Asunto(s)
Albendazol/uso terapéutico , Proteínas Fúngicas/antagonistas & inhibidores , Microsporidios/efectos de los fármacos , Microsporidiosis/tratamiento farmacológico , Triosa-Fosfato Isomerasa/antagonistas & inhibidores , Secuencia de Aminoácidos , Encephalitozoon/efectos de los fármacos , Encephalitozoon/enzimología , Encephalitozoon/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Enfermedades Gastrointestinales/tratamiento farmacológico , Enfermedades Gastrointestinales/microbiología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Humanos , Microsporidios/enzimología , Microsporidios/genética , Microsporidiosis/microbiología , Omeprazol/uso terapéutico , Rabeprazol/uso terapéutico , Homología de Secuencia de Aminoácido , Tiamina/análogos & derivados , Tiamina/uso terapéutico , Triosa-Fosfato Isomerasa/genética , Triosa-Fosfato Isomerasa/metabolismoRESUMEN
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in the world. More than 160 mutations causing the disease have been identified, but only 10% of these variants have been studied at biochemical and biophysical levels. In this study we report on the functional and structural characterization of three naturally occurring variants corresponding to different classes of disease severity: Class I G6PD Durham, Class II G6PD Santa Maria, and Class III G6PD A+. The results showed that the G6PD Durham (severe deficiency), and the G6PD Santa Maria and A+ (less severe deficiency) (Class I, II and III, respectively) affect the catalytic efficiency of these enzymes, are more sensitive to temperature denaturing, and affect the stability of the overall protein when compared to the wild type WT-G6PD. In the variants, the exposure of more and buried hydrophobic pockets was induced and monitored with 8-Anilinonaphthalene-1-sulfonic acid (ANS) fluorescence, directly affecting the compaction of structure at different levels and probably reducing the stability of the protein. The degree of functional and structural perturbation by each variant correlates with the clinical severity reported in different patients.
Asunto(s)
Variación Genética , Glucosafosfato Deshidrogenasa/química , Glucosafosfato Deshidrogenasa/genética , Modelos Moleculares , Conformación Molecular , Mutación , Catálisis , Activación Enzimática , Expresión Génica , Glucosafosfato Deshidrogenasa/metabolismo , Humanos , Cinética , Estabilidad Proteica , Proteínas Recombinantes , Relación Estructura-Actividad , TermodinámicaRESUMEN
Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.
Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Etanol/metabolismo , Gluconacetobacter/enzimología , Acetatos/análisis , Alcohol Deshidrogenasa/química , Alcohol Deshidrogenasa/aislamiento & purificación , Aldehídos/análisis , Secuencia de Aminoácidos , Biocatálisis , Radioisótopos de Carbono/química , Cromatografía de Gases y Espectrometría de Masas , Marcaje Isotópico , Cinética , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Oxidación-Reducción , Desnaturalización Proteica , TemperaturaRESUMEN
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency worldwide, causing a wide spectrum of conditions with severity classified from the mildest (Class IV) to the most severe (Class I). To correlate mutation sites in the G6PD with the resulting phenotypes, we studied four naturally occurring G6PD variants: Yucatan, Nashville, Valladolid and Mexico City. For this purpose, we developed a successful over-expression method that constitutes an easier and more precise method for obtaining and characterizing these enzymes. The k(cat) (catalytic constant) of all the studied variants was lower than in the wild-type. The structural rigidity might be the cause and the most evident consequence of the mutations is their impact on protein stability and folding, as can be observed from the protein yield, the T50 (temperature where 50% of its original activity is retained) values, and differences on hydrophobic regions. The mutations corresponding to more severe phenotypes are related to the structural NADP+ region. This was clearly observed for the Classes III and II variants, which became more thermostable with increasing NADP+, whereas the Class I variants remained thermolabile. The mutations produce repulsive electric charges that, in the case of the Yucatan variant, promote increased disorder of the C-terminus and consequently affect the binding of NADP+, leading to enzyme instability.
Asunto(s)
Deficiencia de Glucosafosfato Deshidrogenasa/enzimología , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/genética , Mutación , Estabilidad de Enzimas , Glucosafosfato Deshidrogenasa/química , Glucosafosfato Deshidrogenasa/metabolismo , Humanos , Modelos Moleculares , Fenotipo , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , TemperaturaRESUMEN
Giardiasis is highly prevalent in the developing world, and treatment failures with the standard drugs are common. This work deals with the proposal of omeprazole as a novel antigiardial drug, focusing on a giardial glycolytic enzyme used to follow the cytotoxic effect at the molecular level. We used recombinant technology and enzyme inactivation to demonstrate the capacity of omeprazole to inactivate giardial triosephosphate isomerase, with no adverse effects on its human counterpart. To establish the specific target in the enzyme, we used single mutants of every cysteine residue in triosephosphate isomerase. The effect on cellular triosephosphate isomerase was evaluated by following the remnant enzyme activity on trophozoites treated with omeprazole. The interaction of omeprazole with giardial proteins was analyzed by fluorescence spectroscopy. The susceptibility to omeprazole of drug-susceptible and drug-resistant strains of Giardia lamblia was evaluated to demonstrate its potential as a novel antigiardial drug. Our results demonstrate that omeprazole inhibits giardial triosephosphate isomerase in a species-specific manner through interaction with cysteine at position 222. Omeprazole enters the cytoplasmic compartment of the trophozoites and inhibits cellular triosephosphate isomerase activity in a dose-dependent manner. Such inhibition takes place concomitantly with the cytotoxic effect caused by omeprazole on trophozoites. G. lamblia triosephosphate isomerase (GlTIM) is a cytoplasmic protein which can help analyses of how omeprazole works against the proteins of this parasite and in the effort to understand its mechanism of cytotoxicity. Our results demonstrate the mechanism of giardial triosephosphate isomerase inhibition by omeprazole and show that this drug is effective in vitro against drug-resistant and drug-susceptible strains of G. lamblia.
Asunto(s)
Antiprotozoarios/farmacología , Inhibidores Enzimáticos/farmacología , Giardia lamblia/efectos de los fármacos , Omeprazol/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Triosa-Fosfato Isomerasa/antagonistas & inhibidores , Trofozoítos/efectos de los fármacos , Albendazol/farmacología , Cultivo Axénico , Cisteína/química , Cisteína/metabolismo , Relación Dosis-Respuesta a Droga , Resistencia a Medicamentos , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Giardia lamblia/enzimología , Giardia lamblia/crecimiento & desarrollo , Giardia lamblia/aislamiento & purificación , Humanos , Metronidazol/farmacología , Mutación , Nitrocompuestos , Pruebas de Sensibilidad Parasitaria , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometría de Fluorescencia , Tiazoles/farmacología , Triosa-Fosfato Isomerasa/genética , Triosa-Fosfato Isomerasa/metabolismo , Trofozoítos/enzimología , Trofozoítos/crecimiento & desarrolloRESUMEN
Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first step of the pentose phosphate pathway. In erythrocytes, the functionality of the pathway is crucial to protect these cells against oxidative damage. G6PD deficiency is the most frequent enzymopathy in humans with a global prevalence of 4.9 %. The clinical picture is characterized by chronic or acute hemolysis in response to oxidative stress, which is related to the low cellular activity of G6PD in red blood cells. The disease is heterogeneous at genetic level with around 160 mutations described, mostly point mutations causing single amino acid substitutions. The biochemical studies aimed to describe the detrimental effects of mutations on the functional and structural properties of human G6PD are indispensable to understand the molecular physiopathology of this disease. Therefore, reliable systems for efficient expression and purification of the protein are highly desirable. In this work, human G6PD was heterologously expressed in Escherichia coli and purified by immobilized metal affinity chromatography in a single chromatographic step. The structural and functional characterization indicates that His-tagged G6PD resembles previous preparations of recombinant G6PD. In contrast with previous protein yield systems, our method is based on commonly available resources and fully accessible laboratory equipment; therefore, it can be readily implemented.
Asunto(s)
Glucosafosfato Deshidrogenasa/aislamiento & purificación , Glucosafosfato Deshidrogenasa/metabolismo , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Cromatografía de Afinidad , Glucosafosfato Deshidrogenasa/química , Glucosafosfato Deshidrogenasa/genética , Histidina , Humanos , Estabilidad Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genéticaRESUMEN
BACKGROUND: We have previously proposed triosephosphate isomerase of Giardia lamblia (GlTIM) as a target for rational drug design against giardiasis, one of the most common parasitic infections in humans. Since the enzyme exists in the parasite and the host, selective inhibition is a major challenge because essential regions that could be considered molecular targets are highly conserved. Previous biochemical evidence showed that chemical modification of the non-conserved non-catalytic cysteine 222 (C222) inactivates specifically GlTIM. The inactivation correlates with the physicochemical properties of the modifying agent: addition of a non-polar, small chemical group at C222 reduces the enzyme activity by one half, whereas negatively charged, large chemical groups cause full inactivation. RESULTS: In this work we used mutagenesis to extend our understanding of the functional and structural effects triggered by modification of C222. To this end, six GlTIM C222 mutants with side chains having diverse physicochemical characteristics were characterized. We found that the polarity, charge and volume of the side chain in the mutant amino acid differentially alter the activity, the affinity, the stability and the structure of the enzyme. The data show that mutagenesis of C222 mimics the effects of chemical modification. The crystallographic structure of C222D GlTIM shows the disruptive effects of introducing a negative charge at position 222: the mutation perturbs loop 7, a region of the enzyme whose interactions with the catalytic loop 6 are essential for TIM stability, ligand binding and catalysis. The amino acid sequence of TIM in phylogenetic diverse groups indicates that C222 and its surrounding residues are poorly conserved, supporting the proposal that this region is a good target for specific drug design. CONCLUSIONS: The results demonstrate that it is possible to inhibit species-specifically a ubiquitous, structurally highly conserved enzyme by modification of a non-conserved, non-catalytic residue through long-range perturbation of essential regions.
Asunto(s)
Giardia lamblia/enzimología , Mutagénesis Sitio-Dirigida , Triosa-Fosfato Isomerasa/química , Triosa-Fosfato Isomerasa/metabolismo , Biocatálisis , Secuencia Conservada , Cristalografía por Rayos X , Estabilidad de Enzimas , Glicolatos/metabolismo , Cinética , Modelos Moleculares , Mutación , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análisis Espectral , Triosa-Fosfato Isomerasa/genéticaRESUMEN
Giardia lamblia depends on glycolysis to obtain ATP, highlighting the suitability of glycolytic enzymes as targets for drug design. We studied triosephosphate isomerase from G. lamblia (GlTIM) as a potential species-specific drug target. Cysteine-reactive agents were used as probes, in order to test those regions near to cysteine residues as targets to perturb enzyme structure and activity. Methyl methanethiosulfonate (MMTS) derivatized three of the five Cys per subunit of dimeric GlTIM and induced 50% of inactivation. The 2-carboxyethyl methanethiosulfonate (MTSCE) modified four Cys and induced 97% of inactivation. Inactivation by MMTS or MTSCE did not affect secondary structure, nor induce dimer dissociation; however, Cys modification decreased thermal stability of enzyme. Inactivation and dissociation of the dimer to stable monomers were reached when four Cys were derivatized by 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB). The effects of DTNB were completely abolished when GlTIM was first treated with MMTS. The effect of thiol reagents on human TIM was also assayed; it is 180-fold less sensitive than GlTIM. Collectively, the data illustrate GlTIM as a good target for drug design.