Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Ethnopharmacol ; 303: 116043, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36535330

ETHNOBOTANICAL RELEVANCE: Equisetum hyemale is used in traditional medicine as an anti-inflammatory, antioxidant, diuretic and anticancer agent. Recent studies have observed antiproliferative activity of this species in some tumor cell lines. AIM OF THE STUDY: The aim of this study was to evaluate the antiproliferative activity of the ethanol extract of E. hyemale and its partitions in oral squamous carcinoma cell lines, the death pathways induced by the most active partition, the acute toxicity and therapeutic activity, and the identification of the main compounds. MATERIALS AND METHODS: The ethanol crude extract was prepared from the stems of E. hyemale and partitions were obtained from this extract with n-hexane, dichloromethane and ethyl acetate. Cytotoxicity assays were performed using MTT on human oral tumor lines SCC-9, SCC4 and SCC-25, and normal primary fibroblasts. The main pathways of programmed cell death were analyzed. Acute toxicity in mice was performed using the most active partition, ethyl acetate. Antitumor activity was accessed in xenotransplants grafts of SCC-9 cells in Balb/nude mice. Phytochemical analysis was performed using UHPLC-MS/MS and dereplication was done using Global Natural Product Social Molecular Networking (GNPS) analysis. RESULTS: Ethanol extract, n-hexane and ethyl acetate partitions showed dose-dependent activity and selectivity towards oral tumor cells, with the ethyl acetate being the most bioactive. This medium polarity partition was shown to induce tumor cell death through apoptosis due to the presence of activated caspase 3/7, DNA fragmentation, chromatin condensation and phosphatidylserine exposure. The ethyl acetate partition also produced low toxicity in mice, provoking mild hepatic changes, but without causing necrosis and significantly reduced tumors volume and weight in xenotransplants of SCC-9 cells. Phytochemical analysis allowed identification of kaempferol glycosides and cinnamic acid derivatives previously described for E. hyemale. In addition it was possible to identify 6 new non-glycolyzed flavonoids 5-Hydroxy-3',4',7,8-tetramethoxyflavone (14), 5,4'-Dihydroxy-7,8,3'-trimethoxyflavone (15), 5,7-Dihydroxy-3',4'-dimethoxyflavone (16), 3',4,5,7-Tretramethoxyflavone (17), 5-Hydroxy-3'4',7-trimethoxyflavone (18), and 5,4'-Dihydroxy-3'-7'-dimethoxyflavone (19); besides 5 compounds already determined to be cytotoxic in other species, Isoferulic acid (1), Ferulic acid (2), Atractylenolide III (6), Dihydroxy-3',4'-dimethoxyflavone (16), and 5-Hydroxy-3'4 ',7-trimethoxyflavone (18). CONCLUSION: The results indicate that the E. hyemale extract and partitions inhibited 3 different cell lines of OSCC in a highly selective nontoxic way by inducing apoptosis of the cells. We identified 6 new non-glycosylated flavonoids and 5 other substances in this species.


Carcinoma, Squamous Cell , Equisetum , Head and Neck Neoplasms , Mouth Neoplasms , Mice , Humans , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Equisetum/chemistry , Carcinoma, Squamous Cell/drug therapy , Squamous Cell Carcinoma of Head and Neck , Tandem Mass Spectrometry , Mice, Nude , Mouth Neoplasms/drug therapy , Ethanol , Phytochemicals/pharmacology , Flavonoids
2.
Molecules ; 27(2)2022 Jan 09.
Article En | MEDLINE | ID: mdl-35056726

Herein, the extraction of bioactive compounds from umbu fruit peel was optimized using thermal-assisted solid-liquid extraction. In parallel, antioxidant, antimicrobial, and inhibitory effects against α-amylase of optimized extract were also evaluated. The combination of operational conditions including the temperature (32-74 °C), ethanol concentration (13-97%), and solid/liquid ratio (1:10-1:60; w/v) was employed using a rotational central composite design for optimization. The extracts were evaluated for total phenolic compounds (TPC), total flavonoid compounds (TFC) and antioxidant capacity by ABTS•+, DPPH• and FRAP assays. The bioactive profile of the optimized extract was obtained by ultra-performance liquid chromatography coupled to quadrupole/time-of-flight mass spectrometry in electrospray ionization in both negative and positive modes. The statistically evaluated results showed that the optimal operational conditions for the recovery of bioactive compounds from umbu fruit peel included 74 °C, 37% ethanol, and a solid-liquid ratio of 1:38. Under these conditions, the obtained values were 1985 mg GAE/100 g, 1364 mg RE/100 g, 122 µmol TE/g, 174 µmol/TE g and 468 µmol Fe2+/g for TPC, TFC, ABTS•+, DPPH•, and FRAP assays, respectively. In addition, the optimized extract was effective against Gram-positive and Gram-negative bacteria (MBC ranged from 0.060 to 0.24 mg GAE/mL), as well as it was effective to inhibit α-amylase (IC50 value of 0.076 mg GAE/mL). The optimized extract showed to be mainly constituted by phenolic acids and flavonoids.


Fruit
...