Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 28(69): e202202527, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-35979748

RESUMEN

The synthesis, characterization and catalytic activity of a new class of diruthenium hydrido carbonyl complexes bound to the tBu PNNP expanded pincer ligand is described. Reacting tBu PNNP with two equiv of RuHCl(PPh3 )3 (CO) at 140 °C produces an insoluble air-stable complex, which was structurally characterized as [Ru2 (tBu PNNP)H(µ-H)Cl(µ-Cl)(CO)2 ] (1) using solid-state NMR, IR and X-ray absorption spectroscopies and follow-up reactivity. A reaction with KOtBu results in deprotonation of a methylene linker to produce [Ru2 (tBu PNNP* )H(µ-H)(µ-OtBu)(CO)2 ] (3) featuring a partially dearomatized naphthyridine core. This enables metal-ligand cooperative activation of H2 analogous to the mononuclear analogue, [Ru(tBu PNP*)H(CO)]. In contrast to the mononuclear system, the bimetallic analogue 3 catalyzes the E-selective semi-hydrogenation of alkynes at ambient temperature and atmospheric H2 pressure with good functional group tolerance. Monitoring the semi-hydrogenation of diphenylacetylene by 1 H NMR spectroscopy shows the intermediacy of Z-stilbene, which is subsequently isomerized to the E-isomer. Initial findings into the mode of action of this system are provided, including the spectroscopic characterization of a polyhydride intermediate and the isolation of a deactivated species with a partially hydrogenated naphthyridine backbone.


Asunto(s)
Alquinos , Compuestos Heterocíclicos , Ligandos , Cristalografía por Rayos X , Modelos Moleculares , Hidrogenación
2.
Chem Sci ; 13(7): 2094-2104, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35308864

RESUMEN

Several metalloenzymes, including [FeFe]-hydrogenase, employ cofactors wherein multiple metal atoms work together with surrounding ligands that mediate heterolytic and concerted proton-electron transfer (CPET) bond activation steps. Herein, we report a new dinucleating PNNP expanded pincer ligand, which can bind two low-valent iron atoms in close proximity to enable metal-metal cooperativity (MMC). In addition, reversible partial dearomatization of the ligand's naphthyridine core enables both heterolytic metal-ligand cooperativity (MLC) and chemical non-innocence through CPET steps. Thermochemical and computational studies show how a change in ligand binding mode can lower the bond dissociation free energy of ligand C(sp3)-H bonds by ∼25 kcal mol-1. H-atom abstraction enabled trapping of an unstable intermediate, which undergoes facile loss of two carbonyl ligands to form an unusual paramagnetic (S = ) complex containing a mixed-valent iron(0)-iron(i) core bound within a partially dearomatized PNNP ligand. Finally, cyclic voltammetry experiments showed that these diiron complexes show catalytic activity for the electrochemical hydrogen evolution reaction. This work presents the first example of a ligand system that enables MMC, heterolytic MLC and chemical non-innocence, thereby providing important insights and opportunities for the development of bimetallic systems that exploit these features to enable new (catalytic) reactivity.

3.
Organometallics ; 38(2): 231-239, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30713362

RESUMEN

The tris-N-heterocycle germanide (tmim)Ge- (1) (tmimH3 = tris(3-methylindol-2-yl)methane) was synthesized by nucleophilic substitution for the tmim3- trianion on GeCl2·dioxane. In combination with the previously reported (tmim)Si- and (tmim)P analogues, it provides a convenient model for investigating the influence of the central atom on the properties of isoelectronic ligands. Complexation of the germanide (tmim)Ge- to CuCl resulted in the dimeric chloro cuprate [(tmim)GeCu(µ-Cl)]2 2-, which is prone to dissociation in MeCN to form the neutral, solvated germylcopper (tmim)GeCu(NCMe)3. The reaction of 1 with Fe2(CO)9 afforded the germyl iron tetracarbonyl [(tmim)GeFe(CO)4]-. Analysis of the ν̃(CO) infrared absorption bands in this complex indicates that the combined electron donating and accepting properties of 1 are found in between those of (tmim)P and (tmim)Si-. In contrast to (tmim)Si-, (tmim)Ge- is reluctant to coordinate to FeCl2, likely because of its softer Lewis base character. Key structural features of the ligands and complexes reflect changes in their electronic properties. In particular, the N-Ge-N angles increase upon coordination to a metal fragment, suggesting increasing hybridization of the Ge s- and p-orbitals. These findings will be useful in further understanding low-valent heavier group 14 complexes in organometallic chemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA