Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J R Soc Interface ; 19(195): 20220497, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36285436

RESUMEN

Collisions between birds and airplanes can damage aircrafts, resulting in delays and cancellation of flights, costing the international civil aviation industry more than 1.4 billion US dollars annually. Driving away birds is therefore crucial, but the effectiveness of current deterrence methods is limited. Live avian predators can be an effective deterrent, because potential prey will not habituate to them, but live predators cannot be controlled entirely. Thus, there is an urgent need for new deterrence methods. We developed the RobotFalcon, a device modelled after the peregrine falcon, and tested its effectiveness to deter flocks of corvids, gulls, starlings and lapwings. We compared its effectiveness with that of a drone, and of conventional methods routinely applied at a military airbase. The RobotFalcon scared away bird flocks from fields immediately, and these fields subsequently remained free of bird flocks for hours. The RobotFalcon outperformed the drone and the best conventional method at the airbase (distress calls). Importantly, there was no evidence that bird flocks habituated to the RobotFalcon over the course of the fieldwork. We conclude that the RobotFalcon is a practical and ethical solution to drive away bird flocks with all advantages of live predators but without their limitations.


Asunto(s)
Charadriiformes , Conducta Predatoria , Animales , Aves , Miedo
2.
PLoS One ; 11(8): e0160106, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27557096

RESUMEN

Globally, billions of flying animals undergo seasonal migrations, many of which occur at night. The temporal and spatial scales at which migrations occur and our inability to directly observe these nocturnal movements makes monitoring and characterizing this critical period in migratory animals' life cycles difficult. Remote sensing, therefore, has played an important role in our understanding of large-scale nocturnal bird migrations. Weather surveillance radar networks in Europe and North America have great potential for long-term low-cost monitoring of bird migration at scales that have previously been impossible to achieve. Such long-term monitoring, however, poses a number of challenges for the ornithological and ecological communities: how does one take advantage of this vast data resource, integrate information across multiple sensors and large spatial and temporal scales, and visually represent the data for interpretation and dissemination, considering the dynamic nature of migration? We assembled an interdisciplinary team of ecologists, meteorologists, computer scientists, and graphic designers to develop two different flow visualizations, which are interactive and open source, in order to create novel representations of broad-front nocturnal bird migration to address a primary impediment to long-term, large-scale nocturnal migration monitoring. We have applied these visualization techniques to mass bird migration events recorded by two different weather surveillance radar networks covering regions in Europe and North America. These applications show the flexibility and portability of such an approach. The visualizations provide an intuitive representation of the scale and dynamics of these complex systems, are easily accessible for a broad interest group, and are biologically insightful. Additionally, they facilitate fundamental ecological research, conservation, mitigation of human-wildlife conflicts, improvement of meteorological products, and public outreach, education, and engagement.


Asunto(s)
Migración Animal , Aves , Oscuridad , Vuelo Animal , Radar , Animales , Europa (Continente) , Estados Unidos , Navegador Web
3.
Behav Ecol ; 22(6): 1173-1177, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22476363

RESUMEN

Anthropogenic disturbances of wildlife, such as noise, human presence, hunting activity, and motor vehicles, are becoming an increasing concern in conservation biology. Fireworks are an important part of celebrations worldwide, and although humans often find fireworks spectacular, fireworks are probably perceived quite differently by wild animals. Behavioral responses to fireworks are difficult to study at night, and little is known about the negative effects fireworks may have on wildlife. Every year, thousands of tons of fireworks are lit by civilians on New Year's Eve in the Netherlands. Using an operational weather radar, we quantified the reaction of birds to fireworks in 3 consecutive years. Thousands of birds took flight shortly after midnight, with high aerial movements lasting at least 45 min and peak densities measured at 500 m altitude. The highest densities were observed over grasslands and wetlands, including nature conservation sites, where thousands of waterfowl rest and feed. The Netherlands is the most important winter staging area for several species of waterfowl in Europe. We estimate that hundreds of thousands of birds in the Netherlands take flight due to fireworks. The spatial and temporal extent of disturbance is substantial, and potential consequences are discussed. Weather radar provides a unique opportunity to study the reaction of birds to fireworks, which has otherwise remained elusive.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA