Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Water Res ; 231: 119669, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36716567

Harmful algal blooms (HABs) have been increasing in frequency, areal extent and duration due to the large increase in nutrient inputs from land-based sources to coastal seas, and cause significant economic losses. In this study, we used the "watershed-coast-continuum" concept to explore the effects of land-based nutrient pollution on HAB development in the Eastern Chinese coastal seas (ECCS). Results from the coupling of a watershed nutrient model and a coast hydrodynamic-biogeochemical model show that between the 1980s and 2000s, the risk of diatom blooms and dinoflagellate blooms increased by 158% and 127%, respectively. The spatial expansion of HAB risk caused by dinoflagellates is larger than that of diatoms. The simulated suitability of the habitat for bloom of Aureococcus anophagefferens, a pico-plankton of non-diatom or dinoflagellate, in the Bohai Sea is consistent with observations spatially and temporally. To halt further nutrient accumulation in the ECCS, reductions of dissolved inorganic nitrogen (DIN) (16%) and dissolved inorganic phosphorus (DIP) (33%) loading are required. To improve the situation of distorted DIN:DIP ratios, even larger reductions of DIN are required, especially in the Bohai Sea. Our approach is a feasible way to predict the risk of HABs under the pressure of increasing anthropogenic nutrient pollution in coastal waters.


Diatoms , Dinoflagellida , Harmful Algal Bloom , Nitrogen/analysis , Nutrients , Oceans and Seas , China , Water Pollution
2.
Mar Pollut Bull ; 186: 114370, 2023 Jan.
Article En | MEDLINE | ID: mdl-36459773

Habitat suitability modelling was used to test the relationship between coastal discharges and seagrass occurrence based on data from Adelaide (South Australia). Seven variables (benthic light including epiphyte shading, temperature, salinity, substrate, wave exposure, currents and tidal exposure) were simulated using a coupled hydrodynamic-biogeochemical model and interrogated against literature-derived thresholds for nine local seagrass species. Light availability was the most critical driver across the study area but wave exposure played a key role in shallow nearshore areas. Model validation against seagrass mapping data showed 86 % goodness-of-fit. Comparison against later mapping data suggested that modelling could predict ~745 ha of seagrass recovery in areas previously classified as 'false positives'. These results suggest that habitat suitability modelling is reliable to test scenarios and predict seagrass response to reduction of land-based loads, providing a useful tool to guide (investment) decisions to prevent loss and promote recovery of seagrasses.


Ecosystem , South Australia
3.
Sci Total Environ ; 849: 157764, 2022 Nov 25.
Article En | MEDLINE | ID: mdl-35932866

Surface water pollution with poly- and perfluorinated compounds (PFAS) is a well-recognized problem, but knowledge about contribution of different emission pathways, especially diffuse ones, is very limited. This study investigates the potential of the pathway oriented MoRE model in shedding light on the relevance of different emission pathways on regional scale and in predicting concentrations and loads in unmonitored rivers. Modelling was supported with a tailor-made monitoring programme aimed to fill gaps on PFAS concentration in different environmental compartments. The study area covers the whole Austrian territory including some additional transboundary catchments and it focuses on perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). These two PFAS are regulated and therefore their production and use in Europe are currently decreasing. Nevertheless, these compounds are still emitted into the environment via legacy pollution and as transformation products from other PFAS. These two compounds were selected for this study in view of the larger information availability compared to other PFAS. Despite considerable uncertainties in the input data, model validations show that this approach performs significantly better than previous modelling frameworks based on population-specific emission factors, population density and wastewater treatment plant information. The study reveals the predominance of emissions via municipal wastewater treatment plants for PFOS and a relevant role of diffuse emission pathways for PFOA. Results suggest that unpaved areas contribute the biggest share to total diffuse emissions, but the estimation of these pathways is affected by the highest uncertainty in the input data and requires better input data from monitoring. Once the currently growing substance-specific data sets on the concentration of PFAS, others than PFOS and PFOA, in different environmental compartments, will reach an adequate quality, the model presented here will be easily applicable to them.


Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Caprylates , Fluorocarbons/analysis , Rivers , Water Pollutants, Chemical/analysis
4.
Glob Chang Biol ; 27(9): 1962-1975, 2021 05.
Article En | MEDLINE | ID: mdl-33372367

The biota of European rivers are affected by a wide range of stressors impairing water quality and hydro-morphology. Only about 40% of Europe's rivers reach 'good ecological status', a target set by the European Water Framework Directive (WFD) and indicated by the biota. It is yet unknown how the different stressors in concert impact ecological status and how the relationship between stressors and status differs between river types. We linked the intensity of seven stressors to recently measured ecological status data for more than 50,000 sub-catchment units (covering almost 80% of Europe's surface area), which were distributed among 12 broad river types. Stressor data were either derived from remote sensing data (extent of urban and agricultural land use in the riparian zone) or modelled (alteration of mean annual flow and of base flow, total phosphorous load, total nitrogen load and mixture toxic pressure, a composite metric for toxic substances), while data on ecological status were taken from national statutory reporting of the second WFD River Basin Management Plans for the years 2010-2015. We used Boosted Regression Trees to link ecological status to stressor intensities. The stressors explained on average 61% of deviance in ecological status for the 12 individual river types, with all seven stressors contributing considerably to this explanation. On average, 39.4% of the deviance was explained by altered hydro-morphology (morphology: 23.2%; hydrology: 16.2%), 34.4% by nutrient enrichment and 26.2% by toxic substances. More than half of the total deviance was explained by stressor interaction, with nutrient enrichment and toxic substances interacting most frequently and strongly. Our results underline that the biota of all European river types are determined by co-occurring and interacting multiple stressors, lending support to the conclusion that fundamental management strategies at the catchment scale are required to reach the ambitious objective of good ecological status of surface waters.


Environmental Monitoring , Rivers , Ecosystem , Hydrology , Water Quality
5.
Sci Rep ; 10(1): 14825, 2020 09 09.
Article En | MEDLINE | ID: mdl-32908203

Aquatic ecosystems are affected by man-made pressures, often causing combined impacts. The analysis of the impacts of chemical pollution is however commonly separate from that of other pressures and their impacts. This evolved from differences in the data available for applied ecology vis-à-vis applied ecotoxicology, which are field gradients and laboratory toxicity tests, respectively. With this study, we demonstrate that the current approach of chemical impact assessment, consisting of comparing measured concentrations to protective environmental quality standards for individual chemicals, is not optimal. In reply, and preparing for a method that would enable the comprehensive assessment and management of water quality pressures, we evaluate various quantitative chemical pollution pressure metrics for mixtures of chemicals in a case study with 24 priority substances of Europe-wide concern. We demonstrate why current methods are sub-optimal for water quality management prioritization and that chemical pollution currently imposes limitations to the ecological status of European surface waters. We discuss why management efforts may currently fail to restore a good ecological status, given that to date only 0.2% of the compounds in trade are considered in European water quality assessment and management.

6.
J Hazard Mater ; 397: 122655, 2020 10 05.
Article En | MEDLINE | ID: mdl-32388089

Knowledge of exposure to a wide range of chemicals, and the spatio-temporal variability thereof, is urgently needed in the context of protecting and restoring aquatic ecosystems. This paper discusses a computational material flow analysis to predict the occurrence of thousands of man-made organic chemicals on a European scale, based on a novel temporally and spatially resolved modelling framework. The goal was to increase understanding of pressures by emerging chemicals and to complement surface water monitoring data. The ambition was to provide a first step towards a "real-life" mixture exposure situation accounting for as many chemicals as possible. Comparison of simulated concentrations and chemical monitoring data for 226 substance/basin combinations showed that the simulated concentrations were accurate on average. For 65% and 90% of substance/basin combinations the error was within one and two orders of magnitude respectively. An analysis of the relative importance of uncertainties revealed that inaccuracies in use volume or use type information contributed most to the error for individual substances. To resolve this, we suggest better registration of use types of industrial chemicals, investigation of presence/absence of industrial chemicals in wastewater and runoff samples and more scientific information exchange.

7.
Environ Toxicol Chem ; 38(4): 905-917, 2019 04.
Article En | MEDLINE | ID: mdl-30675920

The present study considers the collection and use of ecotoxicity data for risk assessment with species sensitivity distributions (SSDs) of chemical pollution in surface water, which are used to quantify the likelihood that critical effect levels are exceeded. This fits the European Water Framework Directive, which suggests using models to assess the likelihood that chemicals affect water quality for management prioritization. We derived SSDs based on chronic and acute ecotoxicity test data for 12 386 compounds. The log-normal SSDs are characterized by the median and the standard deviation of log-transformed ecotoxicity data and by a quality score. A case study illustrates the utility of SSDs for water quality assessment and management prioritization. We quantified the chronic and acute mixture toxic pressure of mixture exposures for >22 000 water bodies in Europe for 1760 chemicals for which we had both exposure and hazard data. The results show the likelihood of mixture exposures exceeding a negligible effect level and increasing species loss. The SSDs in the present study represent a versatile and comprehensive approach to prevent, assess, and manage chemical pollution problems. Environ Toxicol Chem 2019;38:905-917. © 2019 SETAC.


Aquatic Organisms/drug effects , Conservation of Natural Resources/methods , Ecotoxicology/methods , Models, Theoretical , Water Pollutants, Chemical/toxicity , Aquatic Organisms/classification , Ecosystem , Europe , Risk Assessment , Species Specificity , Water Quality
8.
Environ Int ; 120: 544-562, 2018 11.
Article En | MEDLINE | ID: mdl-30170309

Humans and wildlife are exposed to an intractably large number of different combinations of chemicals via food, water, air, consumer products, and other media and sources. This raises concerns about their impact on public and environmental health. The risk assessment of chemicals for regulatory purposes mainly relies on the assessment of individual chemicals. If exposure to multiple chemicals is considered in a legislative framework, it is usually limited to chemicals falling within this framework and co-exposure to chemicals that are covered by a different regulatory framework is often neglected. Methodologies and guidance for assessing risks from combined exposure to multiple chemicals have been developed for different regulatory sectors, however, a harmonised, consistent approach for performing mixture risk assessments and management across different regulatory sectors is lacking. At the time of this publication, several EU research projects are running, funded by the current European Research and Innovation Programme Horizon 2020 or the Seventh Framework Programme. They aim at addressing knowledge gaps and developing methodologies to better assess chemical mixtures, by generating and making available internal and external exposure data, developing models for exposure assessment, developing tools for in silico and in vitro effect assessment to be applied in a tiered framework and for grouping of chemicals, as well as developing joint epidemiological-toxicological approaches for mixture risk assessment and for prioritising mixtures of concern. The projects EDC-MixRisk, EuroMix, EUToxRisk, HBM4EU and SOLUTIONS have started an exchange between the consortia, European Commission Services and EU Agencies, in order to identify where new methodologies have become available and where remaining gaps need to be further addressed. This paper maps how the different projects contribute to the data needs and assessment methodologies and identifies remaining challenges to be further addressed for the assessment of chemical mixtures.


Complex Mixtures , Environmental Exposure , Hazardous Substances , Risk Assessment , Animals , European Union , Humans , Research
9.
Environ Sci Eur ; 29(1): 13, 2017.
Article En | MEDLINE | ID: mdl-28337403

BACKGROUND: This paper describes a conceptual framework for solutions-focused management of chemical contaminants built on novel and systematic approaches for identifying, quantifying and reducing risks of these substances. METHODS: The conceptual framework was developed in interaction with stakeholders representing relevant authorities and organisations responsible for managing environmental quality of water bodies. Stakeholder needs were compiled via a survey and dialogue. The content of the conceptual framework was thereafter developed with inputs from relevant scientific disciplines. RESULTS: The conceptual framework consists of four access points: Chemicals, Environment, Abatement and Society, representing different aspects and approaches to engaging in the issue of chemical contamination of surface waters. It widens the scope for assessment and management of chemicals in comparison to a traditional (mostly) perchemical risk assessment approaches by including abatement- and societal approaches as optional solutions. The solution-focused approach implies an identification of abatement- and policy options upfront in the risk assessment process. The conceptual framework was designed for use in current and future chemical pollution assessments for the aquatic environment, including the specific challenges encountered in prioritising individual chemicals and mixtures, and is applicable for the development of approaches for safe chemical management in a broader sense. The four access points of the conceptual framework are interlinked by four key topics representing the main scientific challenges that need to be addressed, i.e.: identifying and prioritising hazardous chemicals at different scales; selecting relevant and efficient abatement options; providing regulatory support for chemicals management; predicting and prioritising future chemical risks. The conceptual framework aligns current challenges in the safe production and use of chemicals. The current state of knowledge and implementation of these challenges is described. CONCLUSIONS: The use of the conceptual framework, and addressing the challenges, is intended to support: (1) forwarding sustainable use of chemicals, (2) identification of pollutants of priority concern for cost-effective management, (3) the selection of optimal abatement options and (4) the development and use of optimised legal and policy instruments.

10.
Sci Total Environ ; 576: 720-737, 2017 Jan 15.
Article En | MEDLINE | ID: mdl-27810758

Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protecting it from chemical contamination is a major societal goal in the European Union. The Water Framework Directive (WFD) and its daughter directives are the major body of legislation for the protection and sustainable use of European freshwater resources. The practical implementation of the WFD with regard to chemical pollution has faced some challenges. In support of the upcoming WFD review in 2019 the research project SOLUTIONS and the European monitoring network NORMAN has analyzed these challenges, evaluated the state-of-the-art of the science and suggested possible solutions. We give 10 recommendations to improve monitoring and to strengthen comprehensive prioritization, to foster consistent assessment and to support solution-oriented management of surface waters. The integration of effect-based tools, the application of passive sampling for bioaccumulative chemicals and an integrated strategy for prioritization of contaminants, accounting for knowledge gaps, are seen as important approaches to advance monitoring. Including all relevant chemical contaminants in more holistic "chemical status" assessment, using effect-based trigger values to address priority mixtures of chemicals, to better consider historical burdens accumulated in sediments and to use models to fill data gaps are recommended for a consistent assessment of contamination. Solution-oriented management should apply a tiered approach in investigative monitoring to identify toxicity drivers, strengthen consistent legislative frameworks and apply solutions-oriented approaches that explore risk reduction scenarios before and along with risk assessment.

11.
Environ Res ; 143(Pt A): 241-55, 2015 Nov.
Article En | MEDLINE | ID: mdl-26519830

As a consequence of climate change, increased precipitation in winter and longer periods of decreased precipitation in summer are expected to cause more frequent episodes of very high or very low river discharge in the Netherlands. To study the impact of such extreme river discharge conditions on water quality, toxicity profiles and pollutant profiles were determined of suspended particulate matter (SPM) collected from Rivers Meuse and Rhine. Archived (1993-2003) and fresh (2009-2011) SPM samples were selected from the Dutch annual monitoring program of the national water bodies (MWTL), representing episodes with river discharge conditions ranging from very low to regular to very high. SPM extracts were tested in a battery of in vitro bioassays for their potency to interact with the androgen receptor (AR), the estrogen receptor (ER), the arylhydrocarbon receptor (AhR), and the thyroid hormone transporter protein transthyretin (TTR). SPM extracts were further tested for their mutagenic potency (Ames assay) and their potency to inhibit bacterial respiration (Vibrio fischeri bioluminescence assay). Target-analyzed pollutant concentrations of the SPM samples and additional sample information were retrieved from a public database of MWTL results. In vitro toxicity profiles and pollutant profiles were analyzed in relation to discharge conditions and in relation to each other using correlation analysis and multivariate statistics. Compared to regular discharge conditions, composition of SPM during very high River Meuse and Rhine discharges shifted to more coarse, sandy, organic carbon (OC) poor particles. On the contrary, very low discharge led to a shift to more fine, OC rich material, probably dominated by algae. This shift was most evident in River Meuse, which is characterized by almost stagnant water conditions during episodes of drought. During such episodes, SPM extracts from River Meuse demonstrated increased potencies to inhibit bacterial respiration and to compete with thyroid hormone to bind to TTR, possibly due to the presence of fycotoxins. Meanwhile concentrations of polychlorobiphenyls (PCBs) in SPM were also increased. Very high River Meuse discharges on the other hand corresponded to increased androgenic and AhR agoniztic responses, which coincided with increased PAH levels and PAH-related in vivo risk estimates (i.e. multi-substance potentially affected fraction of species; msPAF). In River Rhine, very high discharges also corresponded to increasing androgenic potencies in SPM. Concentrations and corresponding msPAF values of PAHs (and metals), however, decreased with very high discharges in River Rhine in contrast to River Meuse. Mutagenicity was observed for SPM extracts from River Rhine collected during all discharge conditions, except during regular discharge. Aggregated toxicity index values, which were useful to identify toxicity profiles deviating from the generally observed pattern, did not correlate with river discharges, probably due to opposite effects of discharge conditions on different bioassay responses. In conclusion, SPM quality and related in vivo risk estimates changed during very low or very high discharge conditions but the changes were specific for the different toxic endpoints and pollutants in the different rivers. Moreover, bioassay responses to a series of consecutively collected samples from River Rhine during the Christmas flood of 1993 indicated that SPM quality is variable within a single episode of extreme discharge.


Climate Change , Particulate Matter/analysis , Rivers/chemistry , Water Movements , Water Pollutants, Chemical/analysis , Water Quality , Aliivibrio fischeri/drug effects , Netherlands , Particulate Matter/toxicity , Toxicity Tests , Water Pollutants, Chemical/toxicity
12.
Water Res ; 81: 356-65, 2015 Sep 15.
Article En | MEDLINE | ID: mdl-26102555

For human pharmaceuticals, sewage treatment plants (STPs) are a major point of entry to surface waters. The receiving waters provide vital functions. Modeling the impact of STPs on susceptible functions of the surface water system allows for a spatially smart implementation of abatement options at, or in the service area of, STPs. This study was performed on a nation-wide scale for the Netherlands. Point source emissions included were 345 Dutch STPs and nine rivers from neighboring countries. The Dutch surface waters were represented by 2511 surface water units. Modeling was performed for two extreme discharge conditions. Monitoring data of 7 locations along the rivers Rhine and Meuse fall mostly within the range of modeled concentrations. Half of the abstracted volumes of raw water for drinking water production, and a quarter of the Natura 2000 areas (European Union nature protection areas) hosted by the surface waters, are influenced by STPs at low discharge. The vast majority of the total impact of all Dutch STPs during both discharge conditions can be attributed to only 19% of the STPs with regard to the drinking water function, and to 39% of the STPs with regard to the Natura 2000 function. Attributing water treatment technologies to STPs as one of the possible measures to improve water quality and protect susceptible functions can be done in a spatially smart and cost-effective way, using consumption-based detailed hydrological and water quality modeling.


Pharmaceutical Preparations/analysis , Waste Disposal Facilities , Water Pollutants, Chemical/analysis , Carbamazepine/analysis , Conservation of Natural Resources , Drinking Water/chemistry , Environmental Monitoring/methods , Ibuprofen/analysis , Models, Theoretical , Netherlands , Rivers/chemistry , Water Movements , Water Quality
13.
Sci Total Environ ; 512-513: 540-551, 2015 Apr 15.
Article En | MEDLINE | ID: mdl-25644849

Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a few legacy chemicals, many more anthropogenic chemicals can be detected simultaneously in our aquatic resources. However, exposure to chemical mixtures does not necessarily translate into adverse biological effects nor clearly shows whether mitigation measures are needed. Thus, the question which mixtures are present and which have associated combined effects becomes central for defining adequate monitoring and assessment strategies. Here we describe the vision of the international, EU-funded project SOLUTIONS, where three routes are explored to link the occurrence of chemical mixtures at specific sites to the assessment of adverse biological combination effects. First of all, multi-residue target and non-target screening techniques covering a broader range of anticipated chemicals co-occurring in the environment are being developed. By improving sensitivity and detection limits for known bioactive compounds of concern, new analytical chemistry data for multiple components can be obtained and used to characterise priority mixtures. This information on chemical occurrence will be used to predict mixture toxicity and to derive combined effect estimates suitable for advancing environmental quality standards. Secondly, bioanalytical tools will be explored to provide aggregate bioactivity measures integrating all components that produce common (adverse) outcomes even for mixtures of varying compositions. The ambition is to provide comprehensive arrays of effect-based tools and trait-based field observations that link multiple chemical exposures to various environmental protection goals more directly and to provide improved in situ observations for impact assessment of mixtures. Thirdly, effect-directed analysis (EDA) will be applied to identify major drivers of mixture toxicity. Refinements of EDA include the use of statistical approaches with monitoring information for guidance of experimental EDA studies. These three approaches will be explored using case studies at the Danube and Rhine river basins as well as rivers of the Iberian Peninsula. The synthesis of findings will be organised to provide guidance for future solution-oriented environmental monitoring and explore more systematic ways to assess mixture exposures and combination effects in future water quality monitoring.


Conservation of Natural Resources/methods , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Water Resources/statistics & numerical data , Water Quality/standards
14.
Sci Total Environ ; 503-504: 22-31, 2015 Jan 15.
Article En | MEDLINE | ID: mdl-24951181

SOLUTIONS (2013 to 2018) is a European Union Seventh Framework Programme Project (EU-FP7). The project aims to deliver a conceptual framework to support the evidence-based development of environmental policies with regard to water quality. SOLUTIONS will develop the tools for the identification, prioritisation and assessment of those water contaminants that may pose a risk to ecosystems and human health. To this end, a new generation of chemical and effect-based monitoring tools is developed and integrated with a full set of exposure, effect and risk assessment models. SOLUTIONS attempts to address legacy, present and future contamination by integrating monitoring and modelling based approaches with scenarios on future developments in society, economy and technology and thus in contamination. The project follows a solutions-oriented approach by addressing major problems of water and chemicals management and by assessing abatement options. SOLUTIONS takes advantage of the access to the infrastructure necessary to investigate the large basins of the Danube and Rhine as well as relevant Mediterranean basins as case studies, and puts major efforts on stakeholder dialogue and support. Particularly, the EU Water Framework Directive (WFD) Common Implementation Strategy (CIS) working groups, International River Commissions, and water works associations are directly supported with consistent guidance for the early detection, identification, prioritisation, and abatement of chemicals in the water cycle. SOLUTIONS will give a specific emphasis on concepts and tools for the impact and risk assessment of complex mixtures of emerging pollutants, their metabolites and transformation products. Analytical and effect-based screening tools will be applied together with ecological assessment tools for the identification of toxicants and their impacts. The SOLUTIONS approach is expected to provide transparent and evidence-based candidates or River Basin Specific Pollutants in the case study basins and to assist future review of priority pollutants under the WFD as well as potential abatement options.


Conservation of Natural Resources/methods , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/prevention & control , Water Resources/statistics & numerical data , Ecosystem , Environmental Monitoring , Environmental Policy , European Union , Hazardous Substances/analysis , Risk Assessment , Water Pollution, Chemical/statistics & numerical data
15.
Integr Environ Assess Manag ; 5(1): 80-5, 2009 Jan.
Article En | MEDLINE | ID: mdl-19431293

Following the 2000 European Water Framework Directive and recent insights into sediment management on a river basin scale, we discuss in this paper an exposure model aiming to support a risk assessment for chemicals on a basin-wide scale. It establishes spatial relations between causes (pollution sources) and effects (ecological risk), taking into account the geometry, hydrology, and fine sediment dynamics of European river basins. The model, called EXPOBASIN, explicitly takes into account the interaction of chemicals with fine sediment particles, which is important for many policy-relevant chemicals, such as trace metals and polycyclic aromatic hydrocarbons, and it addresses the potential release of historically polluted sediments as a result of extreme floods, which is a major concern in different European river basins. Bioavailability and bioaccumulation are included in the assessment. As a result, the exposure can be quantified not only in terms of water concentrations, but also in terms of sediment concentrations and concentrations in biota. The primary question to be answered by EXPOBASIN is how chemicals, pollution sources, or both rank quantitatively and objectively on a basin-wide scale. Near the end of 2009, the tool will become available to all European water managers and their technical advisors, as a result of the European Union 6th Framework Programme project MODELKEY. The calibration and validation of EXPOBASIN has only just started and will be completed in 2008/2009. Applications to 3 case study areas are planned in this respect. This paper presents the key building blocks of EXPOBASIN and shows some sample results illustrating the raking of pollution sources and chemicals. At the end of the paper, some perspectives for future developments are outlined.


Environmental Monitoring/methods , Models, Theoretical , Risk Assessment , Rivers/chemistry , Water Pollutants, Chemical/chemistry , Conservation of Natural Resources/methods , Environmental Exposure , Europe , International Cooperation , Water Movements , Water Pollution, Chemical/prevention & control
16.
Integr Environ Assess Manag ; 5(1): 5-10, 2009 Jan.
Article En | MEDLINE | ID: mdl-19132820

The European Union Water Framework Directive (WFD) requires a good chemical and ecological status of European surface waters by 2015. Integrated, risk-based management of river basins is presumed to be an appropriate approach to achieve that goal. The approach of focusing on distinct hazardous substances in surface waters together with investment in best available technology for treatment of industrial and domestic effluents was successful in significantly reducing excessive contamination of several European river basins. The use of the concept of chemical status in the WFD is based on this experience and focuses on chemicals for which there is a general agreement that they should be phased out. However, the chemical status, based primarily on a list of 33 priority substances and 8 priority hazardous substances, considers only a small portion of possible toxicants and does not address all causes of ecotoxicological stress in general. Recommendations for further development of this concept are 1) to focus on river basin-specific toxicants, 2) to regularly update priority lists with a focus on emerging toxicants, 3) to consider state-of-the-art mixture toxicity concepts and bioavailability to link chemical and ecological status, and 4) to add a short list of priority effects and to develop environmental quality standards for these effects. The ecological status reflected by ecological quality ratios is a leading principle of the WFD. While on the European scale the improvement of hydromorphological conditions and control of eutrophication are crucial to achieve a good ecological status, on a local and regional scale managers have to deal with multiple pressures. On this scale, toxic pollution may play an important role. Strategic research is necessary 1) to identify dominant pressures, 2) to predict multistressor effects, 3) to develop stressor- and type-specific metrics of pressures, and 4) to better understand the ecology of recovery. The concept of reference conditions to define the ecological status is hard to apply and tends to ignore the fact that ecosystems can be highly dynamic. A better understanding of ecosystem responses to changes as well as early warning systems and concepts sensitive to various stressors to discriminate disturbances from natural variation are required. Because ecosystems are closely interconnected, an integrated monitoring, diagnosis, and stressors-based management of the whole water, sediment, groundwater, soil, and air system is required considering land use and the interaction with a changing climate. Extending this holistic approach beyond a consideration of existing pressures by anticipating on future ones to use and protect the aquatic environment in a sustainable way is one of the big challenges.


Conservation of Energy Resources/methods , Environmental Monitoring/methods , Rivers , Water Pollution/prevention & control , Europe , International Cooperation , Risk Factors , Water Movements , Water Pollutants, Chemical
17.
Environ Sci Pollut Res Int ; 12(5): 252-6, 2005 Sep.
Article En | MEDLINE | ID: mdl-16206716

BACKGROUND: Triggered by the requirement of Water Framework Directive for a good ecological status for European river systems till 2015 and by still existing lacks in tools for cause identification of insufficient ecological status MODELKEY (http:// www.modelkey.org), an Integrated Project with 26 partners from 14 European countries, was started in 2005. MODELKEY is the acronym for 'Models for assessing and forecasting the impact of environmental key pollutants on freshwater and marine ecosystems and biodiversity'. The project is funded by the European Commission within the Sixth Framework Programme. OBJECTIVES: MODELKEY comprises a multidisciplinary approach aiming at developing interlinked tools for an enhanced understanding of cause-effect-relationships between insufficient ecological status and environmental pollution as causative factor and for the assessment and forecasting of the risks of key pollutants on fresh water and marine ecosystems at a river basin and adjacent marine environment scale. New modelling tools for risk assessment including generic exposure assessment models, mechanistic models of toxic effects in simplified food chains, integrated diagnostic effect models based on community patterns, predictive component effect models applying artificial neural networks and GIS-based analysis of integrated risk indexes will be developed and linked to a user-friendly decision support system for the prioritisation of risks, contamination sources and contaminated sites. APPROACH: Modelling will be closely interlinked with extensive laboratory and field investigations. Early warning strategies on the basis of sub-lethal effects in vitro and in vivo are provided and combined with fractionation and analytical tools for effect-directed analysis of key toxicants. Integrated assessment of exposure and effects on biofilms, invertebrate and fish communities linking chemical analysis in water, sediment and biota with in vitro, in vivo and community level effect analysis is designed to provide data and conceptual understanding for risk arising from key toxicants in aquatic ecosystems and will be used for verification of various modelling approaches. CONCLUSION AND PERSPECTIVE: The developed tools will be verified in case studies representing European key areas including Mediterranean, Western and Central European river basins. An end-user-directed decision support system will be provided for cost-effective tool selection and appropriate risk and site prioritisation.


Biodiversity , Conservation of Natural Resources , Ecosystem , Environmental Pollutants/poisoning , Models, Theoretical , Animals , Biofilms , Fishes , Food Chain , Forecasting , Fresh Water , Invertebrates , Risk Assessment , Seawater
...