Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 252
1.
Photosynth Res ; 160(2-3): 77-86, 2024 Jun.
Article En | MEDLINE | ID: mdl-38619701

In this work, we applied Stark fluorescence spectroscopy to an iron-stressed cyanobacterial membrane to reveal key insights about the electronic structures and excited state dynamics of the two important pigment-protein complexes, IsiA and PSII, both of which prevail simultaneously within the membrane during iron deficiency and whose fluorescence spectra are highly overlapped and hence often hardly resolved by conventional fluorescence spectroscopy. Thanks to the ability of Stark fluorescence spectroscopy, the fluorescence signatures of the two complexes could be plausibly recognized and disentangled. The systematic analysis of the SF spectra, carried out by employing standard Liptay formalism with a realistic spectral deconvolution protocol, revealed that the IsiA in an intact membrane retains almost identical excited state electronic structures and dynamics as compared to the isolated IsiA we reported in our earlier study. Moreover, the analysis uncovered that the excited state of the PSII subunit of the intact membrane possesses a significantly large CT character. The observed notably large magnitude of the excited state CT character may signify the supplementary role of PSII in regulative energy dissipation during iron deficiency.


Photosystem II Protein Complex , Spectrometry, Fluorescence , Spectrometry, Fluorescence/methods , Photosystem II Protein Complex/metabolism , Cyanobacteria/metabolism , Iron/metabolism , Iron Deficiencies , Bacterial Proteins/metabolism , Cell Membrane/metabolism , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/chemistry
2.
Sci Rep ; 12(1): 16929, 2022 10 08.
Article En | MEDLINE | ID: mdl-36209224

The SARS-CoV-2 pandemic has added new urgency to the study of viral mechanisms of infection. But while vaccines offer a measure of protection against this specific outbreak, a new era of pandemics has been predicted. In addition to this, COVID-19 has drawn attention to post-viral syndromes and the healthcare burden they entail. It seems integral that knowledge of viral mechanisms is increased through as wide a research field as possible. To this end we propose that quantum biology might offer essential new insights into the problem, especially with regards to the important first step of virus-host invasion. Research in quantum biology often centres around energy or charge transfer. While this is predominantly in the context of photosynthesis there has also been some suggestion that cellular receptors such as olfactory or neural receptors might employ vibration assisted electron tunnelling to augment the lock-and-key mechanism. Quantum tunnelling has also been observed in enzyme function. Enzymes are implicated in the invasion of host cells by the SARS-CoV-2 virus. Receptors such as olfactory receptors also appear to be disrupted by COVID-19. Building on these observations we investigate the evidence that quantum tunnelling might be important in the context of infection with SARS-CoV-2. We illustrate this with a simple model relating the vibronic mode of, for example, a viral spike protein to the likelihood of charge transfer in an idealised receptor. Our results show a distinct parameter regime in which the vibronic mode of the spike protein enhances electron transfer. With this in mind, novel therapeutics to prevent SARS-CoV-2 transmission could potentially be identified by their vibrational spectra.


COVID-19 , Receptors, Odorant , Angiotensin-Converting Enzyme 2 , Humans , Receptors, Virus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Viral Proteins
3.
Nano Lett ; 22(14): 5751-5758, 2022 Jul 27.
Article En | MEDLINE | ID: mdl-35787025

Stack engineering, an atomic-scale metamaterial strategy, enables the design of optical and electronic properties in van der Waals heterostructure devices. Here we reveal the optoelectronic effects of stacking-induced strong coupling between atomic motion and interlayer excitons in WSe2/MoSe2 heterojunction photodiodes. To do so, we introduce the photocurrent spectroscopy of a stack-engineered photodiode as a sensitive technique for probing interlayer excitons, enabling access to vibronic states typically found only in molecule-like systems. The vibronic states in our stack are manifest as a palisade of pronounced periodic sidebands in the photocurrent spectrum in frequency windows close to the interlayer exciton resonances and can be shifted "on demand" through the application of a perpendicular electric field via a source-drain bias voltage. The observation of multiple well-resolved sidebands as well as their ability to be shifted by applied voltages vividly demonstrates the emergence of interlayer exciton vibronic structure in a stack-engineered optoelectronic device.

4.
Plant Physiol ; 189(3): 1204-1219, 2022 06 27.
Article En | MEDLINE | ID: mdl-35512089

Photosynthetic light-harvesting antennae are pigment-binding proteins that perform one of the most fundamental tasks on Earth, capturing light and transferring energy that enables life in our biosphere. Adaptation to different light environments led to the evolution of an astonishing diversity of light-harvesting systems. At the same time, several strategies have been developed to optimize the light energy input into photosynthetic membranes in response to fluctuating conditions. The basic feature of these prompt responses is the dynamic nature of antenna complexes, whose function readily adapts to the light available. High-resolution microscopy and spectroscopic studies on membrane dynamics demonstrate the crosstalk between antennae and other thylakoid membrane components. With the increased understanding of light-harvesting mechanisms and their regulation, efforts are focusing on the development of sustainable processes for effective conversion of sunlight into functional bio-products. The major challenge in this approach lies in the application of fundamental discoveries in light-harvesting systems for the improvement of plant or algal photosynthesis. Here, we underline some of the latest fundamental discoveries on the molecular mechanisms and regulation of light harvesting that can potentially be exploited for the optimization of photosynthesis.


Light-Harvesting Protein Complexes , Photosynthesis , Adaptation, Physiological , Light-Harvesting Protein Complexes/metabolism , Photosynthesis/physiology , Plants/metabolism , Thylakoids/metabolism
5.
ACS Phys Chem Au ; 2(1): 59-67, 2022 Jan 26.
Article En | MEDLINE | ID: mdl-35098245

Under excess illumination, photosystem II of plants dissipates excess energy through the quenching of chlorophyll fluorescence in the light harvesting antenna. Various models involving chlorophyll quenching by carotenoids have been proposed, including (i) direct energy transfer from chlorophyll to the low-lying optically forbidden carotenoid S1 state, (ii) formation of a collective quenched chlorophyll-carotenoid S1 excitonic state, (iii) chlorophyll-carotenoid charge separation and recombination, and (iv) chlorophyll-chlorophyll charge separation and recombination. In previous work, the first three processes were mimicked in model systems: in a Zn-phthalocyanine-carotenoid dyad with an amide linker, direct energy transfer was observed by femtosecond transient absorption spectroscopy, whereas in a Zn-phthalocyanine-carotenoid dyad with an amine linker excitonic quenching was demonstrated. Here, we present a transient absorption spectroscopic study on a Zn-phthalocyanine-carotenoid dyad with a phenylene linker. We observe that two quenching phases of the phthalocyanine excited state exist at 77 and 213 ps in addition to an unquenched phase at 2.7 ns. Within our instrument response of ∼100 fs, carotenoid S1 features rise which point at an excitonic quenching mechanism. Strikingly, we observe an additional rise of carotenoid S1 features at 3.6 ps, which shows that a direct energy transfer mechanism in an inverted kinetics regime is also in effect. We assign the 77 ps decay component to excitonic quenching and the 3.6 ps/213 ps rise and decay components to direct energy transfer. Our results indicate that dual quenching mechanisms may be active in the same molecular system, in addition to an unquenched fraction. Computational chemistry results indicate the presence of multiple conformers where one of the dihedral angles of the phenylene linker assumes distinct values. We propose that the parallel quenching pathways and the unquenched fraction result from such conformational subpopulations. Our results suggest that it is possible to switch between different regimes of quenching and nonquenching through a conformational change on the same molecule, offering insights into potential mechanisms used in biological photosynthesis to adapt to light intensity changes on fast time scales.

6.
Photosynth Res ; 151(3): 225-234, 2022 Mar.
Article En | MEDLINE | ID: mdl-34709567

To uncover the mechanism behind the high photo-electronic conversion efficiency in natural photosynthetic complexes it is essential to trace the dynamics of electronic and vibrational quantum coherences. Here we apply wavelet analysis to two-dimensional electronic spectroscopy data for three purple bacterial reaction centers with mutations that produce drastically different rates of primary charge separation. From the frequency distribution and dynamic evolution features of the quantum beating, electronic coherence with a dephasing lifetime of ~50 fs, vibronic coherence with a lifetime of ~150 fs and vibrational/vibronic coherences with a lifetime of 450 fs are distinguished. We find that they are responsible for, or couple to, different specific steps during the primary charge separation process, i.e., intradimer charge transfer inside the special bacteriochlorophyll pair followed by its relaxation and stabilization of the charge-transfer state. The results enlighten our understanding of how quantum coherences participate in, and contribute to, a biological electron transfer reaction.


Photosynthetic Reaction Center Complex Proteins , Wavelet Analysis , Electron Transport , Electrons , Photosynthetic Reaction Center Complex Proteins/metabolism , Vibration
7.
J Phys Chem Lett ; 12(23): 5526-5533, 2021 Jun 17.
Article En | MEDLINE | ID: mdl-34096727

Despite extensive study, mysteries remain regarding the highly efficient ultrafast charge separation processes in photosynthetic reaction centers (RCs). In this work, transient Stark signals were found to be present in ultrafast two-dimensional electronic spectra recorded for purple bacterial RCs at 77 K. These arose from the electric field that is inherent to the intradimer charge-transfer intermediate of the bacteriochlorophyll pair (P), PA+PB-. By comparing three mutated RCs, a correlation was found between the efficient formation of PA+PB- and a fast charge separation rate. Importantly, the energy level of P* was changed due to the Stark shift, influencing the driving force for P* → P+BA- electron transfer and hence its rate. Furthermore, the orientation and amplitude of the inherent electric field varied in different ways upon different mutation, leading to contrasting changes in the rates. This mechanism of modulation provides a solution to a long-lasting inconsistency between experimental observations and activation energy theory.


Photosynthetic Reaction Center Complex Proteins/chemistry , Rhodobacter sphaeroides/chemistry , Chromatography, Affinity/methods , Electron Transport/genetics , Mutation/genetics , Photosynthetic Reaction Center Complex Proteins/analysis , Rhodobacter sphaeroides/genetics , Spectrum Analysis/methods , Time Factors
8.
Biophys J ; 120(9): 1680-1691, 2021 05 04.
Article En | MEDLINE | ID: mdl-33675767

Reported herein is a Stark fluorescence spectroscopy study performed on photosystem II core antenna complexes CP43 and CP47 in their native and aggregated states. The systematic mathematical modeling of the Stark fluorescence spectra with the aid of conventional Liptay formalism revealed that induction of aggregation in both the core antenna complexes via detergent removal results in a single quenched species characterized by a remarkably broad and inhomogenously broadened emission lineshape peaking around 700 nm. The quenched species possesses a fairly large magnitude of charge-transfer character. From the analogy with the results from aggregated peripheral antenna complexes, the quenched species is thought to originate from the enhanced chlorophyll-chlorophyll interaction due to aggregation. However, in contrast, aggregation of both core antenna complexes did not produce a far-red emission band at ∼730 nm, which was identified in most of the aggregated peripheral antenna complexes. The 730-nm emission band of the aggregated peripheral antenna complexes was attributed to the enhanced chlorophyll-carotenoid (lutein1) interaction in the terminal emitter locus. Therefore, it is very likely that the no occurrence of the far-red band in the aggregated core antenna complexes is directly related to the absence of lutein1 in their structures. The absence of the far-red band also suggests the possibility that aggregation-induced conformational change of the core antenna complexes does not yield a chlorophyll-carotenoid interaction associated energy dissipation channel.


Chlorophyll , Photosystem II Protein Complex , Carotenoids , Energy Transfer , Light-Harvesting Protein Complexes/metabolism , Photosystem II Protein Complex/metabolism , Spectrometry, Fluorescence
9.
Phys Chem Chem Phys ; 22(44): 25720-25729, 2020 Nov 18.
Article En | MEDLINE | ID: mdl-33146173

The Lhca4 antenna complex of plant Photosystem I (PSI) is characterized by extremely red-shifted and broadened absorption and emission bands from its low-energy chlorophylls (Chls). The mixing of a charge-transfer (CT) state with the excited state manifold causing these so-called red forms results in highly complicated multi-component excited energy transfer (EET) kinetics within the complex. The two-dimensional electronic spectroscopy experiments presented here reveal that EET towards the CT state occurs on three timescales: fast from the red Chls (within 1 ps), slower (5-7 ps) from the stromal side Chls, and very slow (100-200 ps) from a newly discovered 690 nm luminal trap. The excellent agreement between the experimental data with the previously presented Redfield-Förster exciton model of Lhca4 strongly supports the equilibration scheme of the bulk excitations with the dynamically localized CT on the stromal side. Thus, a complete picture of the energy transfer pathways leading to the population of the CT final trap within the whole Lhca4 complex is presented. In view of the environmental sensitivity of the CT contribution to the Lhca4 energy landscape, we speculate that one role of the CT states is to regulate the EET from the peripheral antenna to the PSI core.


Energy Transfer , Light-Harvesting Protein Complexes/chemistry , Models, Molecular , Biochemical Phenomena
10.
J Am Chem Soc ; 142(41): 17346-17355, 2020 10 14.
Article En | MEDLINE | ID: mdl-32878439

Photosynthesis in plants starts with the capture of photons by light-harvesting complexes (LHCs). Structural biology and spectroscopy approaches have led to a map of the architecture and energy transfer pathways between LHC pigments. Still, controversies remain regarding the role of specific carotenoids in light-harvesting and photoprotection, obligating the need for high-resolution techniques capable of identifying excited-state signatures and molecular identities of the various pigments in photosynthetic systems. Here we demonstrate the successful application of femtosecond stimulated Raman spectroscopy (FSRS) to a multichromophoric biological complex, trimers of LHCII. We demonstrate the application of global and target analysis (GTA) to FSRS data and utilize it to quantify excitation migration in LHCII trimers. This powerful combination of techniques allows us to obtain valuable insights into structural, electronic, and dynamic information from the carotenoids of LHCII trimers. We report spectral and dynamical information on ground- and excited-state vibrational modes of the different pigments, resolving the vibrational relaxation of the carotenoids and the pathways of energy transfer to chlorophylls. The lifetimes and spectral characteristics obtained for the S1 state confirm that lutein 2 has a distorted conformation in LHCII and that the lutein 2 S1 state does not transfer to chlorophylls, while lutein 1 is the only carotenoid whose S1 state plays a significant energy-harvesting role. No appreciable energy transfer takes place from lutein 1 to lutein 2, contradicting recent proposals regarding the functions of the various carotenoids (Son et al. Chem. 2019, 5 (3), 575-584). Also, our results demonstrate that FSRS can be used in combination with GTA to simultaneously study the electronic and vibrational landscapes in LHCs and pave the way for in-depth studies of photoprotective conformations in photosynthetic systems.

11.
Science ; 368(6498): 1490-1495, 2020 06 26.
Article En | MEDLINE | ID: mdl-32587021

Photosynthesis achieves near unity light-harvesting quantum efficiency yet it remains unknown whether there exists a fundamental organizing principle giving rise to robust light harvesting in the presence of dynamic light conditions and noisy physiological environments. Here, we present a noise-canceling network model that relates noisy physiological conditions, power conversion efficiency, and the resulting absorption spectra of photosynthetic organisms. Using light conditions in full solar exposure, light filtered by oxygenic phototrophs, and light filtered under seawater, we derived optimal absorption characteristics for efficient solar power conversion. We show how light-harvesting antennae can be tuned to maximize power conversion efficiency by minimizing excitation noise, thus providing a unified theoretical basis for the observed wavelength dependence of absorption in green plants, purple bacteria, and green sulfur bacteria.


Light-Harvesting Protein Complexes/physiology , Photosynthesis , Plants/metabolism , Proteobacteria/metabolism , Adsorption , Chlorobi , Energy Transfer , Light , Oxygen , Solar Energy
12.
Biochim Biophys Acta Bioenerg ; 1861(7): 148187, 2020 07 01.
Article En | MEDLINE | ID: mdl-32173383

Phycobilisomes (PBs) absorb light and supply downstream photosynthetic processes with excitation energy in many cyanobacteria and algae. In response to a sudden increase in light intensity, excess excitation energy is photoprotectively dissipated in PBs by means of the orange carotenoid protein (OCP)-related mechanism or via a light-activated intrinsic decay channel. Recently, we have identified that both mechanisms are associated with far-red emission states. Here, we investigate the far-red states involved with the light-induced intrinsic mechanism by exploring the energy landscape and electro-optical properties of the pigments in PBs. While Stark spectroscopy showed that the far-red states in PBs exhibit a strong charge-transfer (CT) character at cryogenic temperatures, single molecule spectroscopy revealed that CT states should also be present at room temperature. Owing to the strong environmental sensitivity of CT states, the knowledge gained from this study may contribute to the design of a new generation of fluorescence markers.


Energy Transfer , Phycobilisomes/metabolism , Protein Conformation , Single Molecule Imaging , Spectrometry, Fluorescence , Synechocystis/metabolism , Temperature
13.
Photosynth Res ; 143(3): 233-239, 2020 Mar.
Article En | MEDLINE | ID: mdl-31768715

Because of their peculiar but intriguing photophysical properties, peridinin-chlorophyll-protein complexes (PCPs), the peripheral light-harvesting antenna complexes of photosynthetic dinoflagellates have been unique targets of multidimensional theoretical and experimental investigations over the last few decades. The major light-harvesting chlorophyll a (Chl a) pigments of PCP are hypothesized to be spectroscopically heterogeneous. To study the spectral heterogeneity in terms of electrostatic parameters, we, in this study, implemented Stark fluorescence spectroscopy on PCP isolated from the dinoflagellate Amphidinium carterae. The comprehensive theoretical modeling of the Stark fluorescence spectrum with the help of the conventional Liptay formalism revealed the simultaneous presence of three emission bands in the fluorescence spectrum of PCP recorded upon excitation of peridinin. The three emission bands are found to possess different sets of electrostatic parameters with essentially increasing magnitude of charge-transfer character from the blue to redder ones. The different magnitudes of electrostatic parameters give good support to the earlier proposition that the spectral heterogeneity in PCP results from emissive Chl a clusters anchored at a different sites and domains within the protein network.


Carotenoids/metabolism , Chlorophyll/metabolism , Dinoflagellida/metabolism , Proteins/metabolism , Spectrometry, Fluorescence
14.
Nanoscale ; 11(32): 15139-15146, 2019 Aug 15.
Article En | MEDLINE | ID: mdl-31372623

Plasmonic coupling of metallic nanoparticles and adjacent pigments can dramatically increase the brightness of the pigments due to the enhanced local electric field. Here, we demonstrate that the fluorescence brightness of a single plant light-harvesting complex (LHCII) can be significantly enhanced when coupled to a gold nanorod (AuNR). The AuNRs utilized in this study were prepared via chemical reactions, and the hybrid system was constructed using a simple and economical spin-assisted layer-by-layer technique. Enhancement of fluorescence brightness of up to 240-fold was observed, accompanied by a 109-fold decrease in the average (amplitude-weighted) fluorescence lifetime from approximately 3.5 ns down to 32 ps, corresponding to an excitation enhancement of 63-fold and emission enhancement of up to 3.8-fold. This large enhancement is due to the strong spectral overlap of the longitudinal localized surface plasmon resonance of the utilized AuNRs and the absorption or emission bands of LHCII. This study provides an inexpensive strategy to explore the fluorescence dynamics of weakly emitting photosynthetic light-harvesting complexes at the single molecule level.


Light-Harvesting Protein Complexes/chemistry , Plant Proteins/chemistry , Plants/metabolism , Gold/chemistry , Immobilized Proteins/chemistry , Immobilized Proteins/metabolism , Light-Harvesting Protein Complexes/metabolism , Microscopy, Electron, Transmission , Nanotubes/chemistry , Plant Proteins/metabolism , Spectrophotometry , Surface Plasmon Resonance
15.
Nat Commun ; 10(1): 933, 2019 02 25.
Article En | MEDLINE | ID: mdl-30804346

Understanding the mechanism behind the near-unity efficiency of primary electron transfer in reaction centers is essential for designing performance-enhanced artificial solar conversion systems to fulfill mankind's growing demands for energy. One of the most important challenges is distinguishing electronic and vibrational coherence and establishing their respective roles during charge separation. In this work we apply two-dimensional electronic spectroscopy to three structurally-modified reaction centers from the purple bacterium Rhodobacter sphaeroides with different primary electron transfer rates. By comparing dynamics and quantum beats, we reveal that an electronic coherence with dephasing lifetime of ~190 fs connects the initial excited state, P*, and the charge-transfer intermediate [Formula: see text]; this [Formula: see text] step is associated with a long-lived quasi-resonant vibrational coherence; and another vibrational coherence is associated with stabilizing the primary photoproduct, [Formula: see text]. The results show that both electronic and vibrational coherences are involved in primary electron transfer process and they correlate with the super-high efficiency.


Rhodobacter sphaeroides/chemistry , Electron Transport , Electrons , Kinetics , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/genetics , Photosynthetic Reaction Center Complex Proteins/metabolism , Rhodobacter sphaeroides/genetics , Rhodobacter sphaeroides/metabolism , Spectrum Analysis , Vibration
16.
Biochim Biophys Acta Bioenerg ; 1860(4): 341-349, 2019 04 01.
Article En | MEDLINE | ID: mdl-30721662

The main light-harvesting pigment-protein complex of cyanobacteria and certain algae is the phycobilisome, which harvests sunlight and regulates the flow of absorbed energy to provide the photochemical reaction centres with a constant energy throughput. At least two light-driven mechanisms of excited energy quenching in phycobilisomes have been identified: the dominant mechanism in many strains of cyanobacteria depends on the orange carotenoid protein (OCP), while the second mechanism is intrinsically available to a phycobilisome and is possibly activated faster than the former. Recent single molecule spectroscopy studies have shown that far-red (FR) emission states are related to the OCP-dependent mechanism and it was proposed that the second mechanism may involve similar states. In this study, we examined the dynamics of simultaneously measured emission spectra and intensities from a large set of individual phycobilisome complexes from Synechocystis PCC 6803. Our results suggest a direct relationship between FR spectral states and thermal energy dissipating states and can be explained by a single phycobilin pigment in the phycobilisome core acting as the site of both quenching and FR emission likely due to the presence of a charge-transfer state. Our experimental method provides a means to accurately resolve the fluorescence lifetimes and spectra of the FR states, which enabled us to quantify a kinetic model that reproduces most of the experimentally determined properties of the FR states.


Bacterial Proteins/chemistry , Carotenoids/chemistry , Phycobilisomes/chemistry , Synechocystis/enzymology , Bacterial Proteins/metabolism , Carotenoids/metabolism , Phycobilisomes/metabolism , Spectrometry, Fluorescence
17.
J R Soc Interface ; 15(148)2018 11 14.
Article En | MEDLINE | ID: mdl-30429265

Biological systems are dynamical, constantly exchanging energy and matter with the environment in order to maintain the non-equilibrium state synonymous with living. Developments in observational techniques have allowed us to study biological dynamics on increasingly small scales. Such studies have revealed evidence of quantum mechanical effects, which cannot be accounted for by classical physics, in a range of biological processes. Quantum biology is the study of such processes, and here we provide an outline of the current state of the field, as well as insights into future directions.


Biophysics/trends , Systems Biology/trends , Quantum Theory
18.
J Am Chem Soc ; 140(51): 17923-17931, 2018 12 26.
Article En | MEDLINE | ID: mdl-30188698

Protein film photoelectrochemistry has previously been used to monitor the activity of photosystem II, the water-plastoquinone photooxidoreductase, but the mechanistic information attainable from a three-electrode setup has remained limited. Here we introduce the four-electrode rotating ring disk electrode technique for quantifying light-driven reaction kinetics and mechanistic pathways in real time at the enzyme-electrode interface. This setup allows us to study photochemical H2O oxidation in photosystem II and to gain an in-depth understanding of pathways that generate reactive oxygen species. The results show that photosystem II reacts with O2 through two main pathways that both involve a superoxide intermediate to produce H2O2. The first pathway involves the established chlorophyll triplet-mediated formation of singlet oxygen, which is followed by its reduction to superoxide at the electrode surface. The second pathway is specific for the enzyme/electrode interface: an exposed antenna chlorophyll is sufficiently close to the electrode for rapid injection of an electron to form a highly reducing chlorophyll anion, which reacts with O2 in solution to produce O2•-. Incomplete H2O oxidation does not significantly contribute to reactive oxygen formation in our conditions. The rotating ring disk electrode technique allows the chemical reactivity of photosystem II to be studied electrochemically and opens several avenues for future investigation.

19.
Biochim Biophys Acta Bioenerg ; 1859(9): 655-665, 2018 09.
Article En | MEDLINE | ID: mdl-29981722

We model the energy transfer dynamics in the Lhca4 peripheral antenna of photosystem I from higher plants. Equilibration between the bulk exciton levels of the antenna and the red-shifted charge-transfer (CT) states is described using the numerically inexpensive Redfield-Förster approach and exact hierarchical equation (HEOM) method. We propose a compartmentalization scheme allowing a quantitatively correct description of the dynamics with the Redfield-Förster theory, including the exciton-type relaxation within strongly coupled compartments and hopping-type migration between them. The Redfield-Förster method gives the kinetics close to the HEOM solution when treating the CT state as dynamically localized. We also demonstrate that the excited states strongly coupled with the CT should be considered as localized as well.


Bacterial Proteins/chemistry , Chlorophyll/metabolism , Light-Harvesting Protein Complexes/chemistry , Bacterial Proteins/metabolism , Energy Transfer , Kinetics , Light-Harvesting Protein Complexes/metabolism , Models, Molecular
20.
Biochim Biophys Acta Bioenerg ; 1859(10): 1151-1160, 2018 Oct.
Article En | MEDLINE | ID: mdl-30056090

Transient absorption spectroscopy has been applied to investigate the energy dissipation mechanisms in the nonameric fucoxanthin-chlorophyll-a,c-binding protein FCPb of the centric diatom Cyclotella meneghiniana. FCPb complexes in their unquenched state were compared with those in two types of quenching environments, namely aggregation-induced quenching by detergent removal, and clustering via incorporation into liposomes. Applying global and target analysis, in combination with a fluorescence lifetime study and annihilation calculations, we were able to resolve two quenching channels in FCPb that involve chlorophyll-a pigments for FCPb exposed to both quenching environments. The fast quenching channel operates on a timescale of tens of picoseconds and exhibits similar spectral signatures as the unquenched state. The slower quenching channel operates on a timescale of tens to hundreds of picoseconds, depending on the degree of quenching, and is characterized by enhanced population of low-energy states between 680 and 710 nm. The results indicate that FCPb is, in principle, able to function as a dissipater of excess energy and can do this in vitro even more efficiently than the homologous FCPa complex, the sole complex involved in fast photoprotection in these organisms. This indicates that when a complex displays photoprotection-related spectral signatures in vitro it does not imply that the complex participates in photoprotection in vivo. We suggest that FCPa is favored over FCPb as the sole energy-regulating complex in diatoms because its composition can more easily establish the balance between light-harvesting and quenching required for efficient photoprotection.

...