Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Stroke ; 54(6): 1587-1592, 2023 06.
Article En | MEDLINE | ID: mdl-37154054

BACKGROUND: The Heidelberg Bleeding Classification, developed for computed tomography, is also frequently used to classify intracranial hemorrhage (ICH) on magnetic resonance imaging. Additionally, the presence of any ICH is frequently used as (safety) outcome measure in clinical stroke trials that evaluate acute interventions. We assessed the interobserver agreement on the presence of any ICH and the type of ICH according to the Heidelberg Bleeding Classification on magnetic resonance imaging in patients treated with reperfusion therapy. METHODS: We used 300 magnetic resonance imaging scans including susceptibility-weighted imaging or T2*-weighted gradient echo imaging of ischemic stroke patients within 1 week after reperfusion therapy. Six observers, blinded to clinical characteristics except for suspected location of the infarction, independently rated ICH according to the Heidelberg Bleeding Classification in random pairs. Percent agreement and Cohen's kappa (κ) were estimated for the presence of any ICH (yes/no), and for agreement on the Heidelberg Bleeding Classification class 1 and 2. For the Heidelberg Bleeding Classification class 1 and 2, weighted κ was estimated to take the degree of disagreement into account. RESULTS: In 297 of 300 scans, the quality of scans was sufficient to score ICH. Observers agreed on the presence or absence of any ICH in 264 of 297 scans (88.9%; κ 0.78 [95% CI, 0.71-0.85]). There was agreement on the Heidelberg Bleeding Classification class 1 and 2 and no ICH in class 1 and 2 in 226 of 297 scans (76.1%; κ 0.63 [95% CI, 0.56-0.69]; weighted κ 0.90 [95% CI, 0.87-0.93]). CONCLUSIONS: The presence of any ICH can be reliably scored on magnetic resonance imaging and can, therefore, be used as (safety) outcome measure in clinical stroke trials that evaluate acute interventions. Agreement of ICH types according to the Heidelberg Bleeding Classification is substantial and disagreements are small.


Brain Ischemia , Ischemic Stroke , Stroke , Humans , Brain Ischemia/diagnostic imaging , Brain Ischemia/therapy , Observer Variation , Intracranial Hemorrhages/diagnostic imaging , Intracranial Hemorrhages/pathology , Stroke/therapy , Magnetic Resonance Imaging/methods , Cerebral Hemorrhage
2.
Stroke ; 45(3): 728-33, 2014 Mar.
Article En | MEDLINE | ID: mdl-24457294

BACKGROUND AND PURPOSE: Nonlacunar cerebral infarcts are presumed to be caused by thromboembolism from the heart or extracranial arteries, whereas lacunar infarcts are thought to be caused by small vessel disease. We investigated to what extent arterial calcifications differ between nonlacunar and lacunar ischemic strokes. METHODS: We studied 820 consecutive patients with transient ischemic attack or ischemic stroke in the anterior circulation who underwent multidetector computed tomography angiography and had no rare cause of stroke. The presence of likely cardioembolic pathogenesis was determined according to the Trial of Org 10172 in Acute Stroke Treatment criteria. The remaining 708 patients were categorized as nonlacunar or lacunar strokes, either transient ischemic attacks or strokes, based on clinical symptoms corrected by brain imaging results. We measured volume of calcifications in the aortic arch, symptomatic extracranial and intracranial carotid artery using multidetector computed tomography angiography. The difference in calcifications between nonlacunar and lacunar strokes was assessed with a multivariable logistic regression analysis. We adjusted for degree of symptomatic carotid artery stenosis and cardiovascular risk factors. RESULTS: We found an independent association between volume of aortic arch calcifications and nonlacunar ischemic strokes (adjusted odds ratio [95% confidence interval], 1.11 [1.02-1.21]). No independent associations between extracranial and intracranial carotid artery calcifications and nonlacunar strokes were present. CONCLUSIONS: The only difference we found between nonlacunar and lacunar strokes was a higher calcification volume in the aortic arch in nonlacunar strokes. Our findings only partially confirm the notion of distinct etiologies and suggest that the potential role of other plaque components, plaque morphology, and aortic arch calcifications in ischemic stroke subtypes awaits further evaluation.


Brain Ischemia/pathology , Calcinosis/pathology , Cerebral Arteries/pathology , Stroke, Lacunar/pathology , Stroke/pathology , Aged , Aorta, Thoracic/pathology , Brain Ischemia/classification , Cardiovascular Diseases/epidemiology , Carotid Arteries/pathology , Cohort Studies , Data Interpretation, Statistical , Embolism/complications , Female , Humans , Logistic Models , Male , Middle Aged , Prospective Studies , Risk Factors , Stroke/classification , Stroke, Lacunar/classification
...