Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 30(12): 1902-1912, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37857822

RESUMEN

Glutaminase (GLS), which deaminates glutamine to form glutamate, is a mitochondrial tetrameric protein complex. Although inorganic phosphate (Pi) is known to promote GLS filamentation and activation, the molecular basis of this mechanism is unknown. Here we aimed to determine the molecular mechanism of Pi-induced mouse GLS filamentation and its impact on mitochondrial physiology. Single-particle cryogenic electron microscopy revealed an allosteric mechanism in which Pi binding at the tetramer interface and the activation loop is coupled to direct nucleophile activation at the active site. The active conformation is prone to enzyme filamentation. Notably, human GLS filaments form inside tubulated mitochondria following glutamine withdrawal, as shown by in situ cryo-electron tomography of cells thinned by cryo-focused ion beam milling. Mitochondria with GLS filaments exhibit increased protection from mitophagy. We reveal roles of filamentous GLS in mitochondrial morphology and recycling.


Asunto(s)
Glutaminasa , Mitofagia , Ratones , Humanos , Animales , Glutaminasa/química , Glutaminasa/metabolismo , Glutamina/metabolismo , Mitocondrias/metabolismo
2.
Nat Chem Biol ; 19(2): 218-229, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36443572

RESUMEN

Bifidobacteria are early colonizers of the human gut and play central roles in human health and metabolism. To thrive in this competitive niche, these bacteria evolved the capacity to use complex carbohydrates, including mammalian N-glycans. Herein, we elucidated pivotal biochemical steps involved in high-mannose N-glycan utilization by Bifidobacterium longum. After N-glycan release by an endo-ß-N-acetylglucosaminidase, the mannosyl arms are trimmed by the cooperative action of three functionally distinct glycoside hydrolase 38 (GH38) α-mannosidases and a specific GH125 α-1,6-mannosidase. High-resolution cryo-electron microscopy structures revealed that bifidobacterial GH38 α-mannosidases form homotetramers, with the N-terminal jelly roll domain contributing to substrate selectivity. Additionally, an α-glucosidase enables the processing of monoglucosylated N-glycans. Notably, the main degradation product, mannose, is isomerized into fructose before phosphorylation, an unconventional metabolic route connecting it to the bifid shunt pathway. These findings shed light on key molecular mechanisms used by bifidobacteria to use high-mannose N-glycans, a perennial carbon and energy source in the intestinal lumen.


Asunto(s)
Bifidobacterium longum , Manosa , Animales , Humanos , Manosa/metabolismo , Bifidobacterium longum/metabolismo , Microscopía por Crioelectrón , Polisacáridos/química , Manosidasas/metabolismo , Glicósido Hidrolasas/química , Bifidobacterium/metabolismo , Mamíferos
3.
J Mol Biol ; 433(15): 167096, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34116125

RESUMEN

In order to form functional filaments, human septins must assemble into hetero-oligomeric rod-like particles which polymerize end-to-end. The rules governing the assembly of these particles and the subsequent filaments are incompletely understood. Although crystallographic approaches have been successful in studying the separate components of the system, there has been difficulty in obtaining high resolution structures of the full particle. Here we report a first cryo-EM structure for a hexameric rod composed of human septins 2, 6 and 7 with a global resolution of ~3.6 Å and a local resolution of between ~3.0 Å and ~5.0 Å. By fitting the previously determined high-resolution crystal structures of the component subunits into the cryo-EM map, we are able to provide an essentially complete model for the particle. This exposes SEPT2 NC-interfaces at the termini of the hexamer and leaves internal cavities between the SEPT6-SEPT7 pairs. The floor of the cavity is formed by the two α0 helices including their polybasic regions. These are locked into place between the two subunits by interactions made with the α5 and α6 helices of the neighbouring monomer together with its polyacidic region. The cavity may serve to provide space allowing the subunits to move with respect to one another. The elongated particle shows a tendency to bend at its centre where two copies of SEPT7 form a homodimeric G-interface. Such bending is almost certainly related to the ability of septin filaments to recognize and even induce membrane curvature.


Asunto(s)
Proteínas de Ciclo Celular/química , Septinas/química , Proteínas de Ciclo Celular/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Unión Proteica , Conformación Proteica en Hélice alfa , Multimerización de Proteína , Septinas/metabolismo
4.
J Phys Chem Lett ; 11(4): 1564-1569, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32023063

RESUMEN

In recent years, cryogenic electron microscopy (Cryo-EM) has revolutionized the structure determination of wet samples and especially that of biological macromolecules. The glassy-water medium in which the molecules are embedded is considered an almost in vivo environment for biological samples. The local structure of amorphous ice is known from neutron- and X-ray-diffraction studies, techniques appropriate for much larger volumes than those used in cryo-EM. We here present a first study of the pair-distribution function g(r) of glassy water under cryo-EM conditions using electron diffraction data. We found g(r) to be between that of low-density amorphous ice and that of supercooled water. Under electron exposure, cubic-ice regions were found to nucleate in thicker glassy-water samples. Our work enables to obtain quantitative structural information using g(r) from cryo-EM.

5.
IUCrJ ; 4(Pt 5): 678-694, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28989723

RESUMEN

Single-particle cryogenic electron microscopy (cryo-EM) can now yield near-atomic resolution structures of biological complexes. However, the reference-based alignment algorithms commonly used in cryo-EM suffer from reference bias, limiting their applicability (also known as the 'Einstein from random noise' problem). Low-dose cryo-EM therefore requires robust and objective approaches to reveal the structural information contained in the extremely noisy data, especially when dealing with small structures. A reference-free pipeline is presented for obtaining near-atomic resolution three-dimensional reconstructions from heterogeneous ('four-dimensional') cryo-EM data sets. The methodologies integrated in this pipeline include a posteriori camera correction, movie-based full-data-set contrast transfer function determination, movie-alignment algorithms, (Fourier-space) multivariate statistical data compression and unsupervised classification, 'random-startup' three-dimensional reconstructions, four-dimensional structural refinements and Fourier shell correlation criteria for evaluating anisotropic resolution. The procedures exclusively use information emerging from the data set itself, without external 'starting models'. Euler-angle assignments are performed by angular reconstitution rather than by the inherently slower projection-matching approaches. The comprehensive 'ABC-4D' pipeline is based on the two-dimensional reference-free 'alignment by classification' (ABC) approach, where similar images in similar orientations are grouped by unsupervised classification. Some fundamental differences between X-ray crystallography versus single-particle cryo-EM data collection and data processing are discussed. The structure of the giant haemoglobin from Lumbricus terrestris at a global resolution of ∼3.8 Šis presented as an example of the use of the ABC-4D procedure.

6.
PLoS Pathog ; 12(9): e1005835, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27606840

RESUMEN

The structure of the infectious prion protein (PrPSc), which is responsible for Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, has escaped all attempts at elucidation due to its insolubility and propensity to aggregate. PrPSc replicates by converting the non-infectious, cellular prion protein (PrPC) into the misfolded, infectious conformer through an unknown mechanism. PrPSc and its N-terminally truncated variant, PrP 27-30, aggregate into amorphous aggregates, 2D crystals, and amyloid fibrils. The structure of these infectious conformers is essential to understanding prion replication and the development of structure-based therapeutic interventions. Here we used the repetitive organization inherent to GPI-anchorless PrP 27-30 amyloid fibrils to analyze their structure via electron cryomicroscopy. Fourier-transform analyses of averaged fibril segments indicate a repeating unit of 19.1 Å. 3D reconstructions of these fibrils revealed two distinct protofilaments, and, together with a molecular volume of 18,990 Å3, predicted the height of each PrP 27-30 molecule as ~17.7 Å. Together, the data indicate a four-rung ß-solenoid structure as a key feature for the architecture of infectious mammalian prions. Furthermore, they allow to formulate a molecular mechanism for the replication of prions. Knowledge of the prion structure will provide important insights into the self-propagation mechanisms of protein misfolding.


Asunto(s)
Amiloide/ultraestructura , Proteínas PrPC/ultraestructura , Proteínas PrPSc/ultraestructura , Amiloide/genética , Animales , Bovinos , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patología , Microscopía por Crioelectrón , Encefalopatía Espongiforme Bovina/genética , Encefalopatía Espongiforme Bovina/metabolismo , Encefalopatía Espongiforme Bovina/patología , Humanos , Proteínas PrPC/genética , Proteínas PrPSc/genética
7.
Sci Rep ; 5: 10317, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-26068909

RESUMEN

Large datasets are emerging in many fields of image processing including: electron microscopy, light microscopy, medical X-ray imaging, astronomy, etc. Novel computer-controlled instrumentation facilitates the collection of very large datasets containing thousands of individual digital images. In single-particle cryogenic electron microscopy ("cryo-EM"), for example, large datasets are required for achieving quasi-atomic resolution structures of biological complexes. Based on the collected data alone, large datasets allow us to precisely determine the statistical properties of the imaging sensor on a pixel-by-pixel basis, independent of any "a priori" normalization routinely applied to the raw image data during collection ("flat field correction"). Our straightforward "a posteriori" correction yields clean linear images as can be verified by Fourier Ring Correlation (FRC), illustrating the statistical independence of the corrected images over all spatial frequencies. The image sensor characteristics can also be measured continuously and used for correcting upcoming images.

9.
J Virol ; 87(22): 12302-12, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24027307

RESUMEN

Lactococcal siphophages from the 936 and P335 groups infect the Gram-positive bacterium Lactococcus lactis using receptor binding proteins (RBPs) attached to their baseplate, a large multiprotein complex at the distal part of the tail. We have previously reported the crystal and electron microscopy (EM) structures of the baseplates of phages p2 (936 group) and TP901-1 (P335 group) as well as the full EM structure of the TP901-1 virion. Here, we report the complete EM structure of siphophage p2, including its capsid, connector complex, tail, and baseplate. Furthermore, we show that the p2 tail is characterized by the presence of protruding decorations, which are related to adhesins and are likely contributed by the major tail protein C-terminal domains. This feature is reminiscent of the tail of Escherichia coli phage λ and Bacillus subtilis phage SPP1 and might point to a common mechanism for establishing initial interactions with their bacterial hosts. Comparative analyses showed that the architecture of the phage p2 baseplate differs largely from that of lactococcal phage TP901-1. We quantified the interaction of its RBP with the saccharidic receptor and determined that specificity is due to lower k(off) values of the RBP/saccharidic dissociation. Taken together, these results suggest that the infection of L. lactis strains by phage p2 is a multistep process that involves reversible attachment, followed by baseplate activation, specific attachment of the RBPs to the saccharidic receptor, and DNA ejection.


Asunto(s)
Bacteriófago P2/química , Bacteriófago P2/patogenicidad , Interacciones Huésped-Patógeno , Lactococcus lactis/fisiología , Oligosacáridos/metabolismo , Virión/química , Adsorción , Bacteriófago P2/metabolismo , Biopelículas , Proteínas de la Cápside/metabolismo , Microscopía Electrónica , Modelos Moleculares , Unión Proteica , Conformación Proteica , Resonancia por Plasmón de Superficie
10.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 852-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23633595

RESUMEN

Flash-cooled three-dimensional crystals of the small protein lysozyme with a thickness of the order of 100 nm were imaged by 300 kV cryo-EM on a Falcon direct electron detector. The images were taken close to focus and to the eye appeared devoid of contrast. Fourier transforms of the images revealed the reciprocal lattice up to 3 Å resolution in favourable cases and up to 4 Å resolution for about half the crystals. The reciprocal-lattice spots showed structure, indicating that the ordering of the crystals was not uniform. Data processing revealed details at higher than 2 Å resolution and indicated the presence of multiple mosaic blocks within the crystal which could be separately processed. The prospects for full three-dimensional structure determination by electron imaging of protein three-dimensional nanocrystals are discussed.


Asunto(s)
Microscopía por Crioelectrón/métodos , Imagenología Tridimensional/métodos , Nanopartículas/química , Proteínas/química , Análisis de Fourier , Muramidasa/química , Proteínas/análisis
11.
FEBS Lett ; 587(7): 906-11, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23428847

RESUMEN

In bacteria selenocysteyl-tRNA(sec) (SelC) is synthesized by selenocysteine synthase (SelA). Here we show by fluorescence anisotropy binding assays and electron microscopical symmetry analysis that the SelA-tRNA(sec) binding stoichiometry is of one tRNA(sec) molecule per SelA monomer (1:1) rather than the 1:2 value proposed previously. Negative stain transmission electron microscopy revealed a D5 pointgroup symmetry for the SelA-tRNA(sec) assembly both with and without tRNA(sec) bound. Furthermore, SelA can associate forming a supramolecular complex of stacked decamer rings, which does not occur in the presence of tRNA(sec). We discuss the structure-function relationships of these assemblies and their regulatory role in bacterial selenocysteyl-tRNA(sec) synthesis.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Aminoacil-ARN de Transferencia/genética , Transferasas/genética , Secuencia de Bases , Unión Competitiva , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Polarización de Fluorescencia , Cinética , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Sustancias Macromoleculares/ultraestructura , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Unión Proteica , Multimerización de Proteína , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Protozoario/química , ARN Protozoario/genética , ARN Protozoario/metabolismo , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Transcripción Genética , Transferasas/química , Transferasas/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
12.
J Virol ; 87(2): 1061-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23135714

RESUMEN

Tailed phages are genome delivery machines exhibiting unequaled efficiency acquired over more than 3 billion years of evolution. Siphophages from the P335 and 936 families infect the Gram-positive bacterium Lactococcus lactis using receptor-binding proteins anchored to the host adsorption apparatus (baseplate). Crystallographic and electron microscopy (EM) studies have shed light on the distinct adsorption strategies used by phages of these two families, suggesting that they might also rely on different infection mechanisms. Here, we report electron microscopy reconstructions of the whole phage TP901-1 (P335 species) and propose a composite EM model of this gigantic molecular machine. Our results suggest conservation of structural proteins among tailed phages and add to the growing body of evidence pointing to a common evolutionary origin for these virions. Finally, we propose that host adsorption apparatus architectures have evolved in correlation with the nature of the receptors used during infection.


Asunto(s)
Bacteriófagos/ultraestructura , Lactococcus lactis/virología , Microscopía Electrónica/métodos , Siphoviridae/ultraestructura , Bacteriófagos/aislamiento & purificación , Modelos Biológicos , Modelos Moleculares , Siphoviridae/aislamiento & purificación
13.
J Biol Chem ; 285(50): 39079-86, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-20937834

RESUMEN

P335 lactococcal phages infect the gram(+) bacterium Lactococcus lactis using a large multiprotein complex located at the distal part of the tail and termed baseplate (BP). The BP harbors the receptor-binding proteins (RBPs), which allow the specific recognition of saccharidic receptors localized on the host cell surface. We report here the electron microscopic structure of the phage TP901-1 wild-type BP as well as those of two mutants bppL (-) and bppU(-), lacking BppL (the RBPs) or both peripheral BP components (BppL and BppU), respectively. We also achieved an electron microscopic reconstruction of a partial BP complex, formed by BppU and BppL. This complex exhibits a tripod shape and is composed of nine BppLs and three BppUs. These structures, combined with light-scattering measurements, led us to propose that the TP901-1 BP harbors six tripods at its periphery, located around the central tube formed by ORF46 (Dit) hexamers, at its proximal end, and a ORF47 (Tal) trimer at its distal extremity. A total of 54 BppLs (18 RBPs) are thus available to mediate host anchoring with a large apparent avidity. TP901-1 BP exhibits an infection-ready conformation and differs strikingly from the lactococcal phage p2 BP, bearing only 6 RBPs, and which needs a conformational change to reach its activated state. The comparison of several Siphoviridae structures uncovers a close organization of their central BP core whereas striking differences occur at the periphery, leading to diverse mechanisms of host recognition.


Asunto(s)
Lactococcus lactis/metabolismo , Proteínas de la Cola de los Virus/química , Bacteriófagos/metabolismo , Biofisica/métodos , Clonación Molecular , Cristalografía por Rayos X/métodos , Cinética , Microscopía Electrónica/métodos , Conformación Molecular , Mutación , Sistemas de Lectura Abierta , Unión Proteica , Conformación Proteica , Siphoviridae/metabolismo , Resonancia por Plasmón de Superficie
14.
Proc Natl Acad Sci U S A ; 107(15): 6852-7, 2010 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-20351260

RESUMEN

Siphoviridae is the most abundant viral family on earth which infects bacteria as well as archaea. All known siphophages infecting gram+ Lactococcus lactis possess a baseplate at the tip of their tail involved in host recognition and attachment. Here, we report analysis of the p2 phage baseplate structure by X-ray crystallography and electron microscopy and propose a mechanism for the baseplate activation during attachment to the host cell. This approximately 1 MDa, Escherichia coli-expressed baseplate is composed of three protein species, including six trimers of the receptor-binding protein (RBP). RBPs host-recognition domains point upwards, towards the capsid, in agreement with the electron-microscopy map of the free virion. In the presence of Ca(2+), a cation mandatory for infection, the RBPs rotated 200 degrees downwards, presenting their binding sites to the host, and a channel opens at the bottom of the baseplate for DNA passage. These conformational changes reveal a novel siphophage activation and host-recognition mechanism leading ultimately to DNA ejection.


Asunto(s)
Bacteriófago P2/metabolismo , Proteínas de la Cola de los Virus/química , Sitios de Unión , Calcio/química , Cationes , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X/métodos , Escherichia coli/metabolismo , Lactococcus lactis/virología , Microscopía Electrónica/métodos , Conformación Molecular , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Unión Proteica , Conformación Proteica
15.
Science ; 322(5898): 92-6, 2008 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-18832644

RESUMEN

A commonly used strategy by microorganisms to survive multiple stresses involves a signal transduction cascade that increases the expression of stress-responsive genes. Stress signals can be integrated by a multiprotein signaling hub that responds to various signals to effect a single outcome. We obtained a medium-resolution cryo-electron microscopy reconstruction of the 1.8-megadalton "stressosome" from Bacillus subtilis. Fitting known crystal structures of components into this reconstruction gave a pseudoatomic structure, which had a virus capsid-like core with sensory extensions. We suggest that the different sensory extensions respond to different signals, whereas the conserved domains in the core integrate the varied signals. The architecture of the stressosome provides the potential for cooperativity, suggesting that the response could be tuned dependent on the magnitude of chemophysical insult.


Asunto(s)
Bacillus subtilis/química , Proteínas Bacterianas/química , Complejos Multiproteicos/química , Fosfoproteínas/química , Proteínas Serina-Treonina Quinasas/química , Transducción de Señal , Secuencia de Aminoácidos , Bacillus subtilis/metabolismo , Bacillus subtilis/ultraestructura , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Procesamiento de Imagen Asistido por Computador , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Fosfoproteínas/metabolismo , Fosfoproteínas/ultraestructura , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/ultraestructura , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Factor sigma/metabolismo
16.
Nucleic Acids Res ; 34(20): 5829-38, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17062628

RESUMEN

The MCM complex from the archaeon Methanother-mobacter thermautotrophicus is a model for the eukaryotic MCM2-7 helicase. We present electron-microscopy single-particle reconstructions of a DNA treated M.thermautotrophicus MCM sample and a ADP.AlF(x) treated sample, respectively assembling as double hexamers and double heptamers. The electron-density maps display an unexpected asymmetry between the two rings, suggesting that large conformational changes can occur within the complex. The structure of the MCM N-terminal domain, as well as the AAA+ and the C-terminal HTH dom-ains of ZraR can be fitted into the reconstructions. Distinct configurations can be modelled for the AAA+ and the HTH domains, suggesting the nature of the conformational change within the complex. The pre-sensor 1 and the helix 2 insertions, important for the activity, can be located pointing towards the centre of the channel in the presence of DNA. We propose a mechanistic model for the helicase activity, based on a ligand-controlled rotation of the AAA+ subunits.


Asunto(s)
Proteínas Arqueales/química , ADN Helicasas/química , Methanobacteriaceae/enzimología , Modelos Moleculares , Adenosina Trifosfatasas/química , Proteínas Arqueales/metabolismo , Proteínas Arqueales/ultraestructura , ADN/química , ADN Helicasas/metabolismo , ADN Helicasas/ultraestructura , Procesamiento de Imagen Asistido por Computador , Estructura Terciaria de Proteína
17.
J Struct Biol ; 156(1): 210-9, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16731005

RESUMEN

The primary candidate for the eukaryotic replicative helicase is the MCM2-7 complex, a hetero-oligomer formed by six AAA+ paralogous polypeptides. A simplified model for structure-function studies is the homo-oligomeric orthologue from the archaeon Methanothermobacter thermoautotrophicus. The crystal structure of the DNA-interacting N-terminal domain of this homo-oligomer revealed a double hexamer in a head-to-head configuration; single-particle electron microscopy studies have shown that the full-length protein complex can form both single and double rings, in which each ring can consist of a cyclical arrangement of six or seven subunits. Using single-particle techniques and especially multivariate statistical symmetry analysis, we have assessed the changes in stoichiometry that the complex undergoes when treated with various nucleotide analogues or when binding a double-stranded DNA fragment. We found that the binding of nucleotides or of double-stranded DNA leads to the preferred formation of double-ring structures. Specifically, the protein complex is present as a double heptamer when treated with a nucleotide analogue, but it is rather found as a double hexamer when complexed with double-stranded DNA. The possible physiological role of the various stoichiometries of the complex is discussed in the light of the proposed mechanisms of helicase activity.


Asunto(s)
Proteínas Arqueales/metabolismo , Cromosomas de Archaea/metabolismo , ADN Helicasas/química , ADN Helicasas/metabolismo , Adenosina Difosfato/farmacología , Proteínas Arqueales/química , Proteínas Arqueales/aislamiento & purificación , Proteínas Arqueales/ultraestructura , Cromosomas de Archaea/química , ADN/metabolismo , ADN Helicasas/genética , Escherichia coli/genética , Methanobacteriaceae/enzimología , Modelos Biológicos , Nucleótidos/metabolismo , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato , Transformación Genética
18.
J Mol Biol ; 354(2): 201-5, 2005 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-16246367

RESUMEN

RNA polymerase from the mesophile Escherichia coli exists in two forms, the core enzyme and the holoenzyme. Using cryo-electron microscopy and single-particle analysis, we have obtained the structure of the complete RNA polymerase from E.coli containing the sigma54 factor within the closed-promoter complex. Comparisons with earlier reconstructions of the core enzyme and the sigma54 holoenzyme reveal the behaviour of this major variant RNA polymerase in defined functional states. The binding of DNA leads to significant conformational changes in the enzyme's catalytic subunits, apparently a necessity for the initiation of enhancer-dependent promoter-specific transcription.


Asunto(s)
ADN Bacteriano/metabolismo , Escherichia coli/enzimología , Regiones Promotoras Genéticas/genética , Conformación Proteica , ARN Polimerasa Sigma 54/química , Sitios de Unión , Microscopía por Crioelectrón , Cristalización , ADN Bacteriano/química , ADN Bacteriano/ultraestructura , ARN Polimerasa Sigma 54/ultraestructura , Transcripción Genética
19.
Phys Rev Lett ; 94(19): 195501, 2005 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-16090183

RESUMEN

The full exploitation of single-molecule spectroscopy in disordered systems is often hampered by spectral diffusion processes of the optical transitions due to structural fluctuations in the local environment of the probe molecule which leads to temporal averaging of the signal. Multivariate statistical pattern recognition techniques, originally developed for single-molecule cryoelectron microscopy, allow us to retrieve detailed information from optical single-molecule spectra. As an example, we present the phonon side band of the B800 excitations of the light-harvesting 2 (LH2) complex from Rhodospirillum molischianum, revealing the electron-phonon coupling strength for these transitions. The measured Debye-Waller factors, ranging from 0.4 to 0.9, fall in the regime of weak electron-phonon coupling.

20.
J Struct Biol ; 151(3): 250-62, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16125414

RESUMEN

The resolution value claimed for an electron microscopical three-dimensional reconstruction indicates the overall quality of the experiment. The Fourier shell correlation (FSC) criterion has now become the standard quality measure. However, what has continued to be controversial is the issue of the FSC threshold level at which one defines the reproducible resolution. Here, we discuss the theoretical behaviour of the FSC in conjunction with the various factors which influence it: the number of "voxels" in a given Fourier shell, the symmetry of the structure, and the size of the structure within the reconstruction volume. Both the theoretical considerations and our model experiments show that fixed-valued FSC threshold (like "0.5") may never be used in a reproducible criterion. Fixed threshold values are-as we show here-simply the result of incorrect assumptions in the basic statistics. Two families of FSC threshold curves are discussed: the sigma-factor curves and the new family of bit-based information threshold curves. Whereas sigma-factor curves indicate the resolution level at which one has collected information significantly above the noise level, the information curves indicate the resolution level at which enough information has been collected for interpretation.


Asunto(s)
Análisis de Fourier , Simulación por Computador , Microscopía por Crioelectrón , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Modelos Estadísticos , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA