Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Front Immunol ; 15: 1390022, 2024.
Article En | MEDLINE | ID: mdl-38698851

Purpose: Previous studies have demonstrated that the majority of patients with an inborn error of immunity (IEI) develop a spike (S)-specific IgG antibody and T-cell response after two doses of the mRNA-1273 COVID-19 vaccine, but little is known about the response to a booster vaccination. We studied the immune responses 8 weeks after booster vaccination with mRNA-based COVID-19 vaccines in 171 IEI patients. Moreover, we evaluated the clinical outcomes in these patients one year after the start of the Dutch COVID-19 vaccination campaign. Methods: This study was embedded in a large prospective multicenter study investigating the immunogenicity of COVID-19 mRNA-based vaccines in IEI (VACOPID study). Blood samples were taken from 244 participants 8 weeks after booster vaccination. These participants included 171 IEI patients (X-linked agammaglobulinemia (XLA;N=11), combined immunodeficiency (CID;N=4), common variable immunodeficiency (CVID;N=45), isolated or undefined antibody deficiencies (N=108) and phagocyte defects (N=3)) and 73 controls. SARS-CoV-2-specific IgG titers, neutralizing antibodies, and T-cell responses were evaluated. One year after the start of the COVID-19 vaccination program, 334 study participants (239 IEI patients and 95 controls) completed a questionnaire to supplement their clinical data focusing on SARS-CoV-2 infections. Results: After booster vaccination, S-specific IgG titers increased in all COVID-19 naive IEI cohorts and controls, when compared to titers at 6 months after the priming regimen. The fold-increases did not differ between controls and IEI cohorts. SARS-CoV-2-specific T-cell responses also increased equally in all cohorts after booster vaccination compared to 6 months after the priming regimen. Most SARS-CoV-2 infections during the study period occurred in the period when the Omicron variant had become dominant. The clinical course of these infections was mild, although IEI patients experienced more frequent fever and dyspnea compared to controls and their symptoms persisted longer. Conclusion: Our study demonstrates that mRNA-based booster vaccination induces robust recall of memory B-cell and T-cell responses in most IEI patients. One-year clinical follow-up demonstrated that SARS-CoV-2 infections in IEI patients were mild. Given our results, we support booster campaigns with newer variant-specific COVID-19 booster vaccines to IEI patients with milder phenotypes.


Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunogenicity, Vaccine , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/prevention & control , Male , Female , SARS-CoV-2/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Adult , Middle Aged , 2019-nCoV Vaccine mRNA-1273/immunology , Follow-Up Studies , Immunoglobulin G/blood , Immunoglobulin G/immunology , Prospective Studies , T-Lymphocytes/immunology , Young Adult , Vaccination , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Spike Glycoprotein, Coronavirus/immunology , Immunologic Deficiency Syndromes/immunology , Adolescent
2.
J Clin Immunol ; 43(6): 1104-1117, 2023 08.
Article En | MEDLINE | ID: mdl-37231290

PURPOSE: Patients with inborn errors of immunity (IEI) are at increased risk of severe coronavirus disease-2019 (COVID-19). Effective long-term protection against COVID-19 is therefore of great importance in these patients, but little is known about the decay of the immune response after primary vaccination. We studied the immune responses 6 months after two mRNA-1273 COVID-19 vaccines in 473 IEI patients and subsequently the response to a third mRNA COVID-19 vaccine in 50 patients with common variable immunodeficiency (CVID). METHODS: In a prospective multicenter study, 473 IEI patients (including X-linked agammaglobulinemia (XLA) (N = 18), combined immunodeficiency (CID) (N = 22), CVID (N = 203), isolated or undefined antibody deficiencies (N = 204), and phagocyte defects (N = 16)), and 179 controls were included and followed up to 6 months after two doses of the mRNA-1273 COVID-19 vaccine. Additionally, samples were collected from 50 CVID patients who received a third vaccine 6 months after primary vaccination through the national vaccination program. SARS-CoV-2-specific IgG titers, neutralizing antibodies, and T cell responses were assessed. RESULTS: At 6 months after vaccination, the geometric mean antibody titers (GMT) declined in both IEI patients and healthy controls, when compared to GMT 28 days after vaccination. The trajectory of this decline did not differ between controls and most IEI cohorts; however, antibody titers in CID, CVID, and isolated antibody deficiency patients more often dropped to below the responder cut-off compared to controls. Specific T cell responses were still detectable in 77% of controls and 68% of IEI patients at 6 months post vaccination. A third mRNA vaccine resulted in an antibody response in only two out of 30 CVID patients that did not seroconvert after two mRNA vaccines. CONCLUSION: A similar decline in IgG titers and T cell responses was observed in patients with IEI when compared to healthy controls 6 months after mRNA-1273 COVID-19 vaccination. The limited beneficial benefit of a third mRNA COVID-19 vaccine in previous non-responder CVID patients implicates that other protective strategies are needed for these vulnerable patients.


COVID-19 , Common Variable Immunodeficiency , Primary Immunodeficiency Diseases , Humans , 2019-nCoV Vaccine mRNA-1273 , COVID-19 Vaccines , COVID-19/prevention & control , Prospective Studies , SARS-CoV-2 , Vaccination , Antibodies, Viral , Immunoglobulin G , RNA, Messenger/genetics , Immunity
3.
Lancet Infect Dis ; 23(8): 901-913, 2023 08.
Article En | MEDLINE | ID: mdl-37088096

BACKGROUND: Bivalent mRNA-based COVID-19 vaccines encoding the ancestral and omicron spike (S) protein were developed as a countermeasure against antigenically distinct SARS-CoV-2 variants. We aimed to assess the (variant-specific) immunogenicity and reactogenicity of mRNA-based bivalent omicron (BA.1) vaccines in individuals who were primed with adenovirus-based or mRNA-based vaccines encoding the ancestral spike protein. METHODS: We analysed results of the direct boost group of the SWITCH ON study, an open-label, multicentre, randomised controlled trial. Health-care workers from four academic hospitals in the Netherlands aged 18-65 years who had completed a primary COVID-19 vaccination regimen and received one booster of an mRNA-based vaccine, given no later than 3 months previously, were eligible. Participants were randomly assigned (1:1) using computer software in block sizes of 16 and 24 to receive an omicron BA.1 bivalent booster straight away (direct boost group) or a bivalent omicron BA.5 booster, postponed for 90 days (postponed boost group), stratified by priming regimen. The BNT162b2 OMI BA.1 boost was given to participants younger than 45 years, and the mRNA-1273.214 boost was given to participants 45 years or older, as per Dutch guidelines. The direct boost group, whose results are presented here, were divided into four subgroups for analysis: (1) Ad26.COV2.S (Johnson & Johnson) prime and BNT162b2 OMI BA.1 (BioNTech-Pfizer) boost (Ad/P), (2) mRNA-based prime and BNT162b2 OMI BA.1 boost (mRNA/P), (3) Ad26.COV2.S prime and mRNA-1273.214 (Moderna) boost (Ad/M), and (4) mRNA-based prime and mRNA-1273.214 boost (mRNA/M). The primary outcome was fold change in S protein S1 subunit-specific IgG antibodies before and 28 days after booster vaccination. The primary outcome and safety were assessed in all participants except those who withdrew, had a SARS-CoV-2 breakthrough infection, or had a missing blood sample at day 0 or day 28. This trial is registered with ClinicalTrials.gov, NCT05471440. FINDINGS: Between Sept 2 and Oct 4, 2022, 219 (50%) of 434 eligible participants were randomly assigned to the direct boost group; 187 participants were included in the primary analyses; exclusions were mainly due to SARS-CoV-2 infection between days 0 and 28. From the 187 included participants, 138 (74%) were female and 49 (26%) were male. 42 (22%) of 187 participants received Ad/P and 44 (24%) mRNA/P (those aged <45 years), and 45 (24%) had received Ad/M and 56 (30%) mRNA/M (those aged ≥45 years). S1-specific binding antibody concentrations increased 7 days after bivalent booster vaccination and remained stable over 28 days in all four subgroups (geometric mean ratio [GMR] between day 0 and day 28 was 1·15 [95% CI 1·12-1·19] for the Ad/P group, 1·17 [1·14-1·20] for the mRNA/P group, 1·20 [1·17-1·23] for the Ad/M group, and 1·16 [1·13-1·19] for the mRNA/M group). We observed no significant difference in the GMR between the Ad/P and mRNA/P groups (p=0·51). The GMR appeared to be higher in the Ad/M group than in the mRNA/M group, but was not significant (p=0·073). Most side-effects were mild to moderate in severity and resolved within 48 h in most individuals. INTERPRETATION: Booster vaccination with mRNA-1273.214 or BNT162b2 OMI BA.1 in adult healthcare workers resulted in a rapid recall of humoral and cellular immune responses independent of the priming regimen. Monitoring of SARS-CoV-2 immunity at the population level, and simultaneously antigenic drift at the virus level, remains crucial to assess the necessity and timing of COVID-19 variant-specific booster vaccinations. FUNDING: The Netherlands Organization for Health Research and Development (ZonMw).


Ad26COVS1 , COVID-19 , Adult , Humans , Female , Male , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Netherlands , SARS-CoV-2/genetics , Health Personnel , Antibodies, Viral , Immunogenicity, Vaccine , Vaccination , Antibodies, Neutralizing
4.
Front Immunol ; 14: 1093385, 2023.
Article En | MEDLINE | ID: mdl-36845159

Background: CVID patients present an increased risk of prolonged SARS-CoV-2 infection and re-infection and a higher COVID-19-related morbidity and mortality compared to the general population. Since 2021, different therapeutic and prophylactic strategies have been employed in vulnerable groups (vaccination, SARS-CoV-2 monoclonal antibodies and antivirals). The impact of treatments over the last 2 years has not been explored in international studies considering the emergence of viral variants and different management between countries. Methods: A multicenter retrospective/prospective real-life study comparing the prevalence and outcomes of SARS-CoV-2 infection between a CVID cohort from four Italian Centers (IT-C) and one cohort from the Netherlands (NL-C), recruiting 773 patients. Results: 329 of 773 CVID patients were found positive for SARS-CoV-2 infection between March 1st, 2020 and September 1st 2022. The proportion of CVID patients infected was comparable in both national sub-cohorts. During all waves, chronic lung disease, "complicated" phenotype, chronic immunosuppressive treatment and cardiovascular comorbidities impacted on hospitalization, whereas risk factors for mortality were older age, chronic lung disease, and bacterial superinfections. IT-C patients were significantly more often treated, both with antivirals and mAbs, than NL-C patients. Outpatient treatment, available only in Italy, started from the Delta wave. Despite this, no significant difference was found for COVID-19 severity between the two cohorts. However, pooling together specific SARS-CoV-2 outpatient treatments (mAbs and antivirals), we found a significant effect on the risk of hospitalization starting from Delta wave. Vaccination with ≥ 3 doses shortened RT-PCR positivity, with an additional effect only in patients receiving antivirals. Conclusions: The two sub-cohorts had similar COVID-19 outcomes despite different treatment approaches. This points out that specific treatment should now be reserved for selected subgroups of CVID patients, based on pre-existing conditions.


COVID-19 , Humans , COVID-19/epidemiology , Prospective Studies , Retrospective Studies , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Viral , Antiviral Agents
5.
Nat Med ; 29(1): 270-278, 2023 01.
Article En | MEDLINE | ID: mdl-36257333

In July 2022, the ongoing monkeypox (MPX) outbreak was declared a public health emergency of international concern. Modified vaccinia Ankara-Bavarian Nordic (MVA-BN, also known as Imvamune, JYNNEOS or Imvanex) is a third-generation smallpox vaccine that is authorized and in use as a vaccine against MPX. To date, there are no data showing MPX virus (MPXV)-neutralizing antibodies in vaccinated individuals nor vaccine efficacy against MPX. Here we show that MPXV-neutralizing antibodies can be detected after MPXV infection and after historic smallpox vaccination. However, a two-shot MVA-BN immunization series in non-primed individuals yields relatively low levels of MPXV-neutralizing antibodies. Dose-sparing of an MVA-based influenza vaccine leads to lower MPXV-neutralizing antibody levels, whereas a third vaccination with the same MVA-based vaccine significantly boosts the antibody response. As the role of MPXV-neutralizing antibodies as a correlate of protection against disease and transmissibility is currently unclear, we conclude that cohort studies following vaccinated individuals are necessary to assess vaccine efficacy in at-risk populations.


Influenza Vaccines , Mpox (monkeypox) , Humans , Antibodies, Neutralizing , Monkeypox virus , Antibodies, Viral , Vaccinia virus , Vaccination
6.
J Hepatol ; 77(5): 1431-1443, 2022 11.
Article En | MEDLINE | ID: mdl-35817222

Certain "exotic" viruses are known to cause clinical diseases with potential liver involvement. These include viruses, beyond regular hepatotropic viruses (hepatitis A, -B(D), -C, -E, cytomegalovirus, Epstein-Barr virus), that can be found in (sub)tropical areas and can cause "exotic viral hepatitis". Transmission routes typically involve arthropods (Crimean Congo haemorrhagic fever, dengue, Rift Valley fever, yellow fever). However, some of these viruses are transmitted by the aerosolised excreta of rodents (Hantavirus, Lassa fever), or via direct contact or contact with bodily fluids (Ebola). Although some exotic viruses are associated with high fatality rates, such as Ebola for example, the clinical presentation of most exotic viruses can range from mild flu-like symptoms, in most cases, right through to being potentially fatal. A smaller percentage of people develop severe disease with haemorrhagic fever, possibly with (fulminant) hepatitis. Liver involvement is often caused by direct tropism for hepatocytes and Kupffer cells, resulting in virus-mediated and/or immune-mediated necrosis. In all exotic hepatitis viruses, PCR is the most sensitive diagnostic method. The determination of IgM/IgG antibodies is a reasonable alternative, but cross-reactivity can be a problem in the case of flaviviruses. Licenced vaccines are available for yellow fever and Ebola, and they are currently under development for dengue. Therapy for exotic viral hepatitis is predominantly supportive. To ensure that preventive measures can be introduced to control possible outbreaks, the timely detection of these viruses is very important.


Dengue , Epstein-Barr Virus Infections , Hemorrhagic Fever, Ebola , Hepatitis, Viral, Human , Vaccines , Yellow Fever , Animals , Hemorrhagic Fever, Ebola/diagnosis , Herpesvirus 4, Human , Immunoglobulin G , Immunoglobulin M
7.
J Allergy Clin Immunol ; 149(6): 1949-1957, 2022 06.
Article En | MEDLINE | ID: mdl-35421449

BACKGROUND: Patients with inborn errors of immunity (IEI) are at increased risk of severe coronavirus disease-2019 (COVID-19). Effective vaccination against COVID-19 is therefore of great importance in this group, but little is known about the immunogenicity of COVID-19 vaccines in these patients. OBJECTIVES: We sought to study humoral and cellular immune responses after mRNA-1273 COVID-19 vaccination in adult patients with IEI. METHODS: In a prospective, controlled, multicenter study, 505 patients with IEI (common variable immunodeficiency [CVID], isolated or undefined antibody deficiencies, X-linked agammaglobulinemia, combined B- and T-cell immunodeficiency, phagocyte defects) and 192 controls were included. All participants received 2 doses of the mRNA-1273 COVID-19 vaccine. Levels of severe acute respiratory syndrome coronavirus-2-specific binding antibodies, neutralizing antibodies, and T-cell responses were assessed at baseline, 28 days after first vaccination, and 28 days after second vaccination. RESULTS: Seroconversion rates in patients with clinically mild antibody deficiencies and phagocyte defects were similar to those in healthy controls, but seroconversion rates in patients with more severe IEI, such as CVID and combined B- and T-cell immunodeficiency, were lower. Binding antibody titers correlated well to the presence of neutralizing antibodies. T-cell responses were comparable to those in controls in all IEI cohorts, with the exception of patients with CVID. The presence of noninfectious complications and the use of immunosuppressive drugs in patients with CVID were negatively correlated with the antibody response. CONCLUSIONS: COVID-19 vaccination with mRNA-1273 was immunogenic in mild antibody deficiencies and phagocyte defects and in most patients with combined B- and T-cell immunodeficiency and CVID. Lowest response was detected in patients with X-linked agammaglobulinemia and in patients with CVID with noninfectious complications. The assessment of longevity of immune responses in these vulnerable patient groups will guide decision making for additional vaccinations.


2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , COVID-19 , Genetic Diseases, Inborn , Immunologic Deficiency Syndromes , 2019-nCoV Vaccine mRNA-1273/blood , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/therapeutic use , Adult , Agammaglobulinemia/genetics , Agammaglobulinemia/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/genetics , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Common Variable Immunodeficiency/genetics , Common Variable Immunodeficiency/immunology , Genetic Diseases, Inborn/blood , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/immunology , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/immunology , Humans , Immunologic Deficiency Syndromes/blood , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/immunology , Prospective Studies , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
8.
Vaccines (Basel) ; 9(2)2021 Jan 20.
Article En | MEDLINE | ID: mdl-33498258

Healthcare workers (HCW) are at increased risk of contracting hepatitis B virus (HBV) and are, therefore, vaccinated pre-exposure. In this study, the HBV vaccination programme for medical students in a university hospital in the Netherlands was evaluated. In the first part, the effectiveness of the programme, which consisted of a vaccination with Engerix-B® at 0, 1, and 6 months, was retrospectively evaluated over 7 years (2012-2019). In the second part of this study, we followed students (the 2019 cohort) who had previously been vaccinated against HBV vaccination (4-262 months prior to primary presentation) in order to investigate the most efficient strategy to obtain an adequate anti hepatitis B surface antigen titre. In the latter, titre determination was performed directly during primary presentation instead of giving previously vaccinated students a booster vaccination first. The vaccination programme, as evaluated in the retrospective first part of the study, was effective (surpassed the protection limit of 10 IU/L) in 98.8 percent of the students (95% CI (98.4-99.2)). In the second part of our study, we found that 80 percent (95% CI (70-87)) of the students who had previously been vaccinated against HBV were still sufficiently protected and did not require a booster vaccination. With this strategy, the previously vaccinated students needed an average of 1.4 appointments instead of the 2 appointments needed with the former strategy. This knowledge is important and can save time and resources in the process of occupational HBV vaccination of HCW.

9.
Ned Tijdschr Geneeskd ; 1642020 09 03.
Article Nl | MEDLINE | ID: mdl-33030319

Antiviral vaccines have contributed substantially to a reduction in the morbidity and mortality suffered from viral infectious diseases, especially during the second half of the 20th century. The efficacy of traditional live-attenuated and inactivated vaccine formulations, however, has been limited for some viral diseases, due to either virus-specific or host-related challenges. The application of genetic engineering technologies developed in the past decades allows for the creation of novel subunit vaccines, viral vector vaccines and nucleic acid-based vaccines. These vaccines, in some cases complemented by novel adjuvants, elicit a more finely controlled immunological response that more effectively prevents certain viral infections. They can be tailored for immunologically hyporesponsive individuals or rapidly mount protection during an outbreak. This article provides an overview of these technologies and how they have been applied in vaccines that have recently become available.


Viral Vaccines/immunology , Virus Diseases/prevention & control , Genetic Vectors , Humans , Influenza Vaccines , Vaccines, Attenuated/immunology , Vaccines, DNA , Vaccines, Inactivated/immunology , Vaccines, Synthetic , Virus Diseases/immunology , mRNA Vaccines
...