Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
AIDS ; 38(6): 791-801, 2024 May 01.
Article En | MEDLINE | ID: mdl-38300257

OBJECTIVE: This study investigated the association of plasma microRNAs before and during antiretroviral therapy (ART) with poor CD4 + T-cell recovery during the first year of ART. DESIGN: MicroRNAs were retrospectively measured in stored plasma samples from people with HIV (PWH) in sub-Saharan Africa who were enrolled in a longitudinal multicountry cohort and who had plasma viral-load less than 50 copies/ml after 12 months of ART. METHODS: First, the levels of 179 microRNAs were screened in a subset of participants from the lowest and highest tertiles of CD4 + T-cell recovery (ΔCD4) ( N  = 12 each). Next, 11 discordant microRNAs, were validated in 113 participants (lowest tertile ΔCD4: n  = 61, highest tertile ΔCD4: n  = 52). For discordant microRNAs in the validation, a pathway analysis was conducted. Lastly, we compared microRNA levels of PWH to HIV-negative controls. RESULTS: Poor CD4 + T-cell recovery was associated with higher levels of hsa-miR-199a-3p and hsa-miR-200c-3p before ART, and of hsa-miR-17-5p and hsa-miR-501-3p during ART. Signaling by VEGF and MET, and RNA polymerase II transcription pathways were identified as possible targets of hsa-miR-199a-3p, hsa-200c-3p, and hsa-miR-17-5p. Compared with HIV-negative controls, we observed lower hsa-miR-326, hsa-miR-497-5p, and hsa-miR-501-3p levels before and during ART in all PWH, and higher hsa-miR-199a-3p and hsa-miR-200c-3p levels before ART in all PWH, and during ART in PWH with poor CD4 + T-cell recovery only. CONCLUSION: These findings add to the understanding of pathways involved in persistent HIV-induced immune dysregulation during suppressive ART.


HIV Infections , HIV-1 , MicroRNAs , Humans , HIV-1/genetics , Retrospective Studies , HIV Infections/drug therapy , MicroRNAs/genetics , T-Lymphocytes
2.
PLoS Pathog ; 19(10): e1011735, 2023 Oct.
Article En | MEDLINE | ID: mdl-37844099

SARS-CoV-2 causes COVID-19, an infectious disease with symptoms ranging from a mild cold to severe pneumonia, inflammation, and even death. Although strong inflammatory responses are a major factor in causing morbidity and mortality, superinfections with bacteria during severe COVID-19 often cause pneumonia, bacteremia and sepsis. Aberrant immune responses might underlie increased sensitivity to bacteria during COVID-19 but the mechanisms remain unclear. Here we investigated whether SARS-CoV-2 directly suppresses immune responses to bacteria. We studied the functionality of human dendritic cells (DCs) towards a variety of bacterial triggers after exposure to SARS-CoV-2 Spike (S) protein and SARS-CoV-2 primary isolate (hCoV-19/Italy). Notably, pre-exposure of DCs to either SARS-CoV-2 S protein or a SARS-CoV-2 isolate led to reduced type I interferon (IFN) and cytokine responses in response to Toll-like receptor (TLR)4 agonist lipopolysaccharide (LPS), whereas other TLR agonists were not affected. SARS-CoV-2 S protein interacted with the C-type lectin receptor DC-SIGN and, notably, blocking DC-SIGN with antibodies restored type I IFN and cytokine responses to LPS. Moreover, blocking the kinase Raf-1 by a small molecule inhibitor restored immune responses to LPS. These results suggest that SARS-CoV-2 modulates DC function upon TLR4 triggering via DC-SIGN-induced Raf-1 pathway. These data imply that SARS-CoV-2 actively suppresses DC function via DC-SIGN, which might account for the higher mortality rates observed in patients with COVID-19 and bacterial superinfections.


COVID-19 , Superinfection , Humans , SARS-CoV-2/metabolism , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , COVID-19/metabolism , Lectins, C-Type/metabolism , Cytokines/metabolism , Dendritic Cells
3.
AIDS ; 37(15): 2297-2304, 2023 12 01.
Article En | MEDLINE | ID: mdl-37702421

OBJECTIVE: People with HIV rarely control viral replication after cessation of antiretroviral therapy (ART). We present a person with HIV with extraordinary posttreatment control (PTC) for over 23 years after temporary ART during acute HIV infection (AHI) leading to a new insight in factors contributing to PTC. DESIGN/METHODS: Viral reservoir was determined by HIV qPCR, Intact Proviral DNA Assay, and quantitative viral outgrowth assay. Viral replication kinetics were determined in autologous and donor PBMC. IgG levels directed against HIV envelope and neutralizing antibodies were measured. Immune phenotyping of T cells and HIV-specific T-cell responses were analyzed by flow cytometry. RESULTS: The case presented with AHI and a plasma viral load of 2.7 million copies/ml. ART was initiated 2 weeks after diagnosis and interrupted after 26 months. Replicating virus was isolated shortly after start ART. At 18 years after treatment interruption, HIV-DNA in CD4 + T cells and low levels of HIV-RNA in plasma (<5 copies/ml) were detectable. Stable HIV envelope glycoprotein-directed IgG was present during follow-up, but lacked neutralizing activity. Strong antiviral CD8 + T-cell responses, in particular targeting HIV-gag, were detected during 25 years follow-up. Moreover, we found a P255A mutation in an HLA-B∗44 : 02 restricted gag-epitope, which was associated with decreased replication. CONCLUSION: We describe an exceptional case of PTC, which is likely associated with sustained potent gag-specific CD8 + T-cell responses in combination with a replication attenuating escape mutation in gag. Understanding the initiation and preservation of the HIV-specific T-cell responses could guide the development of strategies to induce HIV control.


HIV Infections , Humans , Leukocytes, Mononuclear , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , DNA , Immunoglobulin G , Viral Load
4.
Microbiol Spectr ; 11(3): e0115523, 2023 06 15.
Article En | MEDLINE | ID: mdl-37166335

Few studies have comprehensively compared severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine-induced and hybrid B- and T-cell responses in people with HIV (PWH) to those in comparable controls without HIV. We included 195 PWH and 246 comparable controls from the AGEhIV COVID-19 substudy. A positive nucleocapsid antibody (INgezim IgA/IgM/IgG) or self-reported PCR test defined prior SARS-CoV-2 infection. SARS-CoV-2 anti-spike (anti-S) IgG titers and anti-S IgG production by memory B cells were assessed. Neutralizing antibody titers were determined in a subset of participants. T-cell responses were assessed by gamma interferon (IFN-γ) release and activation-induced marker assay. We estimated mean differences in postvaccination immune responses (ß) between levels of determinants. Anti-S IgG titers and anti-S IgG production by memory B cells were not different between PWH and controls. Prior SARS-CoV-2 infection (ß = 0.77), receiving mRNA vaccine (ß = 0.56), female sex (ß = 0.24), fewer days between last vaccination and sampling (ß = 0.07), and a CD4/CD8 ratio of <1.0 (ß = -0.39) were independently associated with anti-S IgG titers, but HIV status was not. Neutralization titers against the ancestral and Delta and Omicron SARS-CoV-2 variants were not different between PWH and controls. IFN-γ release was higher in PWH. Prior SARS-CoV-2 infection (ß = 2.39), HIV-positive status (ß = 1.61), and fewer days between last vaccination and sampling (ß = 0.23) were independently associated with higher IFN-γ release. The percentages of SARS-CoV-2-reactive CD4+ and CD8+ T cells, however, were not different between PWH and controls. Individuals with well-controlled HIV generally mount robust vaccine-induced as well as hybrid B- and T-cell immunity across SARS-CoV-2 vaccine platforms similar to controls. Determinants of a reduced vaccine response were likewise largely similar in both groups and included a lower CD4/CD8 ratio. IMPORTANCE Some studies have suggested that people with HIV may respond less well to vaccines against SARS-CoV-2. We comprehensively compared B- and T-cell responses to different COVID-19 vaccines in middle-aged persons with well-treated HIV and individuals of the same age without HIV, who were also highly comparable in terms of demographics and lifestyle, including those with prior SARS-CoV-2 infection. Individuals with HIV generally mounted equally robust immunity to the different vaccines. Even stronger immunity was observed in both groups after prior SARS-CoV-2 infection. These findings are reassuring with respect to the efficacy of SARS-Cov-2 vaccines for the sizable and increasing global population of people with HIV with access and a good response to HIV treatment.


COVID-19 , HIV Infections , Vaccines , Middle Aged , Female , Humans , COVID-19 Vaccines , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Antibodies, Viral , Immunoglobulin A , Immunoglobulin G
5.
BMC Pharmacol Toxicol ; 23(1): 43, 2022 06 28.
Article En | MEDLINE | ID: mdl-35765101

The capsid (CA) subunit of the HIV-1 Gag polyprotein is involved in several steps of the viral cycle, from the assembly of new viral particles to the protection of the viral genome until it enters into the nucleus of newly infected cells. As such, it represents an interesting therapeutic target to tackle HIV infection. In this study, we screened hundreds of compounds with a low cost of synthesis for their ability to interfere with Gag assembly in vitro. Representatives of the most promising families of compounds were then tested for their ability to inhibit HIV-1 replication in cellulo. From these molecules, a hit compound from the benzimidazole family with high metabolic stability and low toxicity, 2-(4-N,N-dimethylaminophenyl)-5-methyl-1-phenethyl-1H-benzimidazole (696), appeared to block HIV-1 replication with an IC50 of 3 µM. Quantitative PCR experiments demonstrated that 696 does not block HIV-1 infection before the end of reverse transcription, and molecular docking confirmed that 696 is likely to bind at the interface between two monomers of CA and interfere with capsid oligomerization. Altogether, 696 represents a promising lead molecule for the development of a new series of HIV-1 inhibitors.


HIV Infections , HIV-1 , Benzimidazoles/pharmacology , Capsid Proteins , Humans , Molecular Docking Simulation , Virus Replication
6.
Eur J Immunol ; 52(4): 646-655, 2022 04.
Article En | MEDLINE | ID: mdl-35099061

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), an infectious disease characterized by strong induction of inflammatory cytokines, progressive lung inflammation, and potentially multiorgan dysfunction. It remains unclear how SARS-CoV-2 infection leads to immune activation. The Spike (S) protein of SARS-CoV-2 has been suggested to trigger TLR4 and thereby activate immunity. Here, we have investigated the role of TLR4 in SARS-CoV-2 infection and immunity. Neither exposure of isolated S protein, SARS-CoV-2 pseudovirus nor primary SARS-CoV-2 isolate induced TLR4 activation in a TLR4-expressing cell line. Human monocyte-derived DCs express TLR4 but not angiotensin converting enzyme 2 (ACE2), and DCs were not infected by SARS-CoV-2. Notably, neither S protein nor SARS-CoV-2 induced DC maturation or cytokines, indicating that both S protein and SARS-CoV-2 virus particles do not trigger extracellular TLRs including TLR4. Ectopic expression of ACE2 in DCs led to efficient infection by SARS-CoV-2 and, strikingly, efficient type I IFN and cytokine responses. These data strongly suggest that not extracellular TLRs but intracellular viral sensors are key players in sensing SARS-CoV-2. These data imply that SARS-CoV-2 escapes direct sensing by TLRs, which might underlie the lack of efficient immunity to SARS-CoV-2 early during infection.


COVID-19 , Dendritic Cells , Spike Glycoprotein, Coronavirus , Toll-Like Receptor 4 , COVID-19/immunology , Cell Line , Dendritic Cells/immunology , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Toll-Like Receptor 4/immunology
7.
EMBO J ; 40(20): e106765, 2021 10 18.
Article En | MEDLINE | ID: mdl-34510494

The current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and outbreaks of new variants highlight the need for preventive treatments. Here, we identified heparan sulfate proteoglycans as attachment receptors for SARS-CoV-2. Notably, neutralizing antibodies against SARS-CoV-2 isolated from COVID-19 patients interfered with SARS-CoV-2 binding to heparan sulfate proteoglycans, which might be an additional mechanism of antibodies to neutralize infection. SARS-CoV-2 binding to and infection of epithelial cells was blocked by low molecular weight heparins (LMWH). Although dendritic cells (DCs) and mucosal Langerhans cells (LCs) were not infected by SARS-CoV-2, both DC subsets efficiently captured SARS-CoV-2 via heparan sulfate proteoglycans and transmitted the virus to ACE2-positive cells. Notably, human primary nasal cells were infected by SARS-CoV-2, and infection was blocked by pre-treatment with LMWH. These data strongly suggest that heparan sulfate proteoglycans are important attachment receptors facilitating infection and transmission, and support the use of LMWH as prophylaxis against SARS-CoV-2 infection.


COVID-19/transmission , Heparan Sulfate Proteoglycans/metabolism , Heparin, Low-Molecular-Weight/pharmacology , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/pharmacology , Chlorocebus aethiops , Dendritic Cells/metabolism , Dendritic Cells/virology , Epithelial Cells/metabolism , Epithelial Cells/virology , Host-Pathogen Interactions , Humans , Mucous Membrane/cytology , Mucous Membrane/virology , SARS-CoV-2/metabolism , Syndecan-1/metabolism , Syndecan-4/metabolism , Vero Cells , COVID-19 Drug Treatment
8.
Virology ; 562: 9-18, 2021 10.
Article En | MEDLINE | ID: mdl-34242748

Monocytes/macrophages are important target cells for HIV-1. Here, we investigated whether HIV-1 induces changes in the macrophage gene expression profile to support viral replication. We observed that the macrophage gene expression profiles dramatically changed upon HIV-1 infection. The majority of the HIV-1 regulated genes were also differentially expressed in M2a macrophages. The biological functions associated with the HIV-1 induced gene expression profile in macrophages were mainly related to inflammatory responses. CD9 and ITGA3 were among the top genes upregulated upon HIV-1 infection. We showed that these genes support viral replication and that downregulation of these genes decreased HIV-1 replication in macrophages. Here we showed that HIV-1 infection of macrophages induces a gene expression profile that may dampen inflammatory responses. CD9 and ITGA3 were among the top genes regulated by HIV-1 and were shown to support viral production most likely at the level of viral budding and release.


HIV-1/physiology , Integrin alpha3/metabolism , Macrophages/virology , Tetraspanin 29/metabolism , Virus Replication/physiology , Gene Expression Profiling , Humans , Integrin alpha3/genetics , Macrophages/metabolism , Tetraspanin 29/genetics , Virus Release/physiology
9.
Viruses ; 13(3)2021 03 06.
Article En | MEDLINE | ID: mdl-33800773

Nef is a multifunctional viral protein that has the ability to downregulate cell surface molecules, including CD4 and major histocompatibility complex class I (MHC-I) and, as recently shown, also members of the serine incorporator family (SERINC). Here, we analyzed the impact of naturally occurring mutations in HIV-1 Nef on its ability to counteract SERINC restriction and the clinical course of infection. HIV-1 Nef sequences were obtained from 123 participants of the Amsterdam Cohort Studies and showed multiple amino acid variations and mutations. Most of the primary Nef proteins showed increased activity to counteract SERINC3 and SERINC5 as compared to NL4-3 Nef. Several mutations in Nef were associated with either an increased or decreased infectivity of Bal26-pseudotyped HIV-1 produced in the presence of SERINC3 or SERINC5. The 8R, 157N and R178G Nef mutations were shown to have an effect on disease progression. Survival analysis showed an accelerated disease progression of individuals infected with HIV-1 carrying arginine or asparagine at position 8 or 157 in Nef, respectively, or the R178G Nef mutation. Here, we observed that naturally occurring mutations in Nef affect the ability of Nef to counteract SERINC3- and SERINC5-mediated inhibition of viral infectivity. The majority of these Nef mutations had no significant effect on HIV-1 pathogenesis and only the 8R, 157N and R178G mutations were associated with disease course.


HIV Infections/virology , HIV-1 , Membrane Glycoproteins/immunology , Membrane Proteins/immunology , nef Gene Products, Human Immunodeficiency Virus/genetics , Cohort Studies , HIV-1/genetics , HIV-1/immunology , Host Microbial Interactions , Humans , Male , Mutation , Netherlands , Sexual and Gender Minorities
10.
Antiviral Res ; 146: 139-145, 2017 Oct.
Article En | MEDLINE | ID: mdl-28844749

BACKGROUND&AIMS: With the introduction of DAA's, the majority of treated chronic hepatitis C patients (CHC) achieve a viral cure. The exact mechanisms by which the virus is cleared after successful therapy, is still unknown. The aim was to assess the role of the immune system and miRNA levels in acquiring a sustained virological response after DAA treatment in CHC patients with and without prior RG-101 (anti-miR-122) dosing. METHODS: In this multicenter, investigator-initiated study, 29 patients with hepatitis C virus (HCV) genotype 1 (n = 11), 3 (n = 17), or 4 (n = 1) infection were treated with sofosbuvir and daclatasvir ± ribavirin. 18 patients were previously treated with RG-101. IP-10 levels were measured by ELISA. Ex vivo HCV-specific T cell responses were quantified in IFN-γ-ELISpot assays. Plasma levels of miR-122 were measured by qPCR. RESULTS: All patients had an SVR12. IP-10 levels rapidly declined during treatment, but were still elevated 24 weeks after treatment as compared to healthy controls (median 53.82 and 39.4 pg/mL, p = 0.02). Functional IFN-γ HCV-specific T cell responses did not change by week 12 of follow-up (77.5 versus 125 SFU/106 PBMC, p = 0.46). At follow-up week 12, there was no difference in plasma miR-122 levels between healthy controls and patients with and without prior RG-101 dosing. CONCLUSIONS: Our data shows that successful treatment of CHC patients with and without prior RG-101 dosing results in reduction of broad immune activation, and normalisation of miR-122 levels (EudraCT: 2014-002808-25). TRIAL REGISTRATION: EudraCT: 2014-002808-25.


Antiviral Agents/therapeutic use , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/immunology , MicroRNAs/antagonists & inhibitors , Adult , Aged , Antiviral Agents/administration & dosage , Carbamates , Chemokine CXCL10/blood , Drug Therapy, Combination , Female , Genotype , Humans , Imidazoles/therapeutic use , Male , MicroRNAs/blood , Middle Aged , Pyrrolidines , RNA, Viral/blood , Ribavirin/therapeutic use , Sofosbuvir/therapeutic use , Valine/analogs & derivatives , Young Adult
11.
J Infect Dis ; 215(9): 1421-1429, 2017 05 01.
Article En | MEDLINE | ID: mdl-28368488

Background: Hepatitis B virus (HBV) modulates microRNA (miRNA) expression to support viral replication. The aim of this study was to identify miRNAs associated with hepatitis B e antigen (HBeAg) status and response to antiviral therapy in patients with chronic hepatitis B (CHB) , and to assess if these miRNAs are actively secreted by hepatoma cells. Methods: Plasma miRNA levels were measured by reverse-transcription quantitative polymerase chain reaction in healthy controls (n = 10) and pretreatment samples of an identification cohort (n = 24) and a confirmation cohort (n = 64) of CHB patients treated with peginterferon/nucleotide analogue combination therapy. Levels of HBV-associated miRNAs were measured in cells, extracellular vesicles, and hepatitis B surface antigen (HBsAg) particles of hepatoma cell lines. Results: HBeAg-positive patients had higher plasma levels of miR-122-5p, miR-125b-5p, miR-192-5p, miR-193b-3p, and miR-194-5p compared to HBeAg-negative patients, and levels of these miRNAs were associated with HBV DNA and HBsAg levels. Pretreatment plasma levels of miR-301a-3p and miR-145-5p were higher in responders (combined response or HBsAg loss) compared to nonresponders. miR-192-5p, miR-193b-3p, and miR-194-5p were present in extracellular vesicles and HBsAg particles derived from hepatoma cells. Conclusions: We identified miRNAs that are associated with HBeAg status, levels of HBV DNA and HBsAg, and treatment response in CHB patients. We demonstrated that several of these miRNAs are present in extracellular vesicles and HBsAg particles secreted by hepatoma cells.


Hepatitis B e Antigens/blood , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/drug therapy , MicroRNAs/blood , Adult , Antiviral Agents/therapeutic use , Carcinoma, Hepatocellular , Cell Line, Tumor , Cohort Studies , Female , Hepatitis B, Chronic/genetics , Hepatitis B, Chronic/virology , Humans , Liver Neoplasms , Male , MicroRNAs/genetics , Middle Aged , Treatment Outcome
12.
Lancet ; 389(10070): 709-717, 2017 02 18.
Article En | MEDLINE | ID: mdl-28087069

BACKGROUND: miR-122 is an important host factor for hepatitis C virus (HCV) replication. The aim of this study was to assess the safety and tolerability, pharmacokinetics, and antiviral effect of a single dose of RG-101, a hepatocyte targeted N-acetylgalactosamine conjugated oligonucleotide that antagonises miR-122, in patients with chronic HCV infection with various genotypes. METHODS: In this randomised, double-blind, placebo-controlled, multicentre, phase 1B study, patients were randomly assigned to RG-101 or placebo (7:1). We enrolled men and postmenopausal or hysterectomised women (aged 18-65 years) with chronic HCV genotype 1, 3, or 4 infection diagnosed at least 24 weeks before screening who were either treatment naive to or relapsed after interferon-α based therapy. Patients with co-infection (hepatitis B virus or HIV infection), evidence of decompensated liver disease, or a history of hepatocellular carcinoma were excluded. Randomisation was done by an independent, unblinded, statistician using the SAS procedure Proc Plan. The first cohort received one subcutaneous injection of 2 mg/kg RG-101 or placebo; the second cohort received one subcutaneous injection of 4 mg/kg or placebo. Patients were followed up for 8 weeks (all patients) and up to 76 weeks (patients with no viral rebound and excluding those who were randomised to the placebo group) after randomisation. The primary objective was safety and tolerability of RG-101. This trial was registered with EudraCT, number 2013-002978-49. FINDINGS: Between June 4, 2014, and Oct 27, 2014, we enrolled 32 patients with chronic HCV genotype 1 (n=16), 3 (n=10), or 4 (n=6) infections. In the first cohort, 14 patients were randomly assigned to receive 2 mg/kg RG-101 and two patients were randomly assigned to receive placebo, and in the second cohort, 14 patients were randomly assigned to receive 4 mg/kg RG-101 and two patients were randomly assigned to receive placebo. Overall, 26 of the 28 patients dosed with RG-101 reported at least one treatment-related adverse event. At week 4, the median viral load reduction from baseline was 4·42 (IQR 3·23-5·00) and 5·07 (4·19-5·35) log10 IU/mL in patients dosed with 2 mg/kg RG-101 or 4 mg/kg RG-101. Three patients had undetectable HCV RNA levels 76 weeks after a single dose of RG-101. Viral rebound at or before week 12 was associated with the appearance of resistance associated substitutions in miR-122 binding regions in the 5' UTR of the HCV genome. INTERPRETATION: This study showed that one administration of 2 mg/kg or 4 mg/kg RG-101, a hepatocyte targeted N-acetylgalactosamine conjugated anti-miR-122 oligonucleotide, was well tolerated and resulted in substantial viral load reduction in all treated patients within 4 weeks, and sustained virological response in three patients for 76 weeks. FUNDING: Regulus Therapeutics, Inc.


Hepatitis C, Chronic/drug therapy , MicroRNAs/antagonists & inhibitors , MicroRNAs/therapeutic use , Acetylgalactosamine , Cohort Studies , Double-Blind Method , Female , Humans , Injections, Subcutaneous , Male , MicroRNAs/pharmacokinetics , Middle Aged , Oligonucleotides , Viral Load/drug effects
13.
Sci Rep ; 4: 5079, 2014 May 28.
Article En | MEDLINE | ID: mdl-24866155

Mother-to-child HIV-1 transmission pairs represent a good opportunity to study the dynamics of CTL escape and reversion after transmission in the light of shared and non-shared HLA-alleles. Mothers share half of their HLA alleles with their children, while the other half is inherited from the father and is generally discordant between mother and child. This implies that HIV-1 transmitted from mother to child enters a host environment to which it has already partially adapted. Here, we studied viral evolution and the dynamics of CTL escape mutations and reversion of these mutations after transmission in the context of shared and non-shared HLA alleles in viral variants obtained from five mother-to-child transmission pairs. Only limited HIV-1 evolution was observed in the children after mother-to-child transmission. Viral evolution was mainly driven by forward mutations located inside CTL epitopes restricted by HLA alleles inherited from the father, which may be indicative of CTL pressure.


Evolution, Molecular , HIV Infections/virology , HIV-1/genetics , Phylogeny , Adult , Amino Acid Sequence , Epitopes/genetics , Epitopes/immunology , Female , Gene Products, gag/genetics , HIV Infections/genetics , HIV Infections/immunology , HIV Infections/transmission , HIV-1/immunology , HIV-1/pathogenicity , HLA-A Antigens/genetics , HLA-A Antigens/immunology , Humans , Infant , Infant, Newborn , Molecular Sequence Data , Mother-Child Relations , Pregnancy , env Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/genetics
14.
PLoS One ; 8(12): e81235, 2013.
Article En | MEDLINE | ID: mdl-24339913

Expression of HLA-B*57 and the closely related HLA-B*58:01 are associated with prolonged survival after HIV-1 infection. However, large differences in disease course are observed among HLA-B*57/58:01 patients. Escape mutations in CTL epitopes restricted by these HLA alleles come at a fitness cost and particularly the T242N mutation in the TW10 CTL epitope in Gag has been demonstrated to decrease the viral replication capacity. Additional mutations within or flanking this CTL epitope can partially restore replication fitness of CTL escape variants. Five HLA-B*57/58:01 progressors and 5 HLA-B*57/58:01 long-term nonprogressors (LTNPs) were followed longitudinally and we studied which compensatory mutations were involved in the restoration of the viral fitness of variants that escaped from HLA-B*57/58:01-restricted CTL pressure. The Sequence Harmony algorithm was used to detect homology in amino acid composition by comparing longitudinal Gag sequences obtained from HIV-1 patients positive and negative for HLA-B*57/58:01 and from HLA-B*57/58:01 progressors and LTNPs. Although virus isolates from HLA-B*57/58:01 individuals contained multiple CTL escape mutations, these escape mutations were not associated with disease progression. In sequences from HLA-B*57/58:01 progressors, 5 additional mutations in Gag were observed: S126N, L215T, H219Q, M228I and N252H. The combination of these mutations restored the replication fitness of CTL escape HIV-1 variants. Furthermore, we observed a positive correlation between the number of escape and compensatory mutations in Gag and the replication fitness of biological HIV-1 variants isolated from HLA-B*57/58:01 patients, suggesting that the replication fitness of HLA-B*57/58:01 escape variants is restored by accumulation of compensatory mutations.


HIV-1/physiology , HLA-B Antigens/immunology , Mutation , T-Lymphocytes, Cytotoxic/immunology , Virus Replication/genetics , gag Gene Products, Human Immunodeficiency Virus/genetics , Disease Progression , HIV-1/genetics , Humans , Kinetics , Models, Molecular , Protein Conformation , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/metabolism
15.
J Gen Virol ; 94(Pt 2): 354-359, 2013 Feb.
Article En | MEDLINE | ID: mdl-23136365

Three men from a proven homosexual human immunodeficiency virus type 1 (HIV-1) transmission cluster showed large variation in their clinical course of infection. To evaluate the effect of evolution of the same viral variant in these three patients, we analysed sequence variation in the capsid protein and determined the impact of the observed variation on viral replication fitness in vitro. Viral gag sequences from all three patients contained a mutation at position 242, T242N or T242S, which have been associated with lower virus replication in vitro. Interestingly, HIV-1 variants from patients with a progressive clinical course of infection developed compensatory mutations within the capsid that restored viral fitness, instead of reversion of the T242S mutation. In HIV-1 variants from patient 1, an HLA-B57(+) elite controller, no compensatory mutations emerged during follow-up.


Genetic Variation , HIV Infections/transmission , HIV-1/physiology , Virus Replication , gag Gene Products, Human Immunodeficiency Virus/metabolism , HIV Infections/virology , HIV-1/genetics , Humans , Male , Molecular Sequence Data , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation, Missense , Sequence Analysis, DNA , Suppression, Genetic , gag Gene Products, Human Immunodeficiency Virus/genetics
16.
J Gen Virol ; 91(Pt 5): 1354-64, 2010 May.
Article En | MEDLINE | ID: mdl-20053822

Human immunodeficiency virus type 1 (HIV-1) resistance to broadly neutralizing antibodies such as b12, which targets the highly conserved CD4-binding site, raises a significant hurdle for the development of a neutralizing antibody-based vaccine. Here, 15 individuals were studied of whom seven developed b12-resistant viruses late in infection. The study investigated whether immune pressure may be involved in the selection of these viruses in vivo. Although four out of seven patients showed HIV-1-specific broadly neutralizing activity in serum, none of these patients had CD4-binding site-directed antibodies, indicating that strong humoral immunity is not a prerequisite for the outgrowth of b12-resistant viruses. In virus variants from one patient, who showed extremely weak heterologous and autologous neutralizing activity in serum, mutations were identified in the envelope that coincided with changes in b12 neutralization sensitivity. Lack of cytotoxic T-cell activity against epitopes with and without these mutations excluded a role for host cellular immunity in the selection of b12-resistant mutant viruses in this patient. However, b12 resistance correlated well with increased virus replication kinetics, indicating that selection for enhanced infectivity, possibly driven by the low availability of target cells in the later stages of disease, may coincide with increased resistance to CD4-binding site-directed agents, such as b12. These results showed that b12-resistant HIV-1 variants can emerge during the course of natural infection in the absence of both humoral and cellular immune pressure, suggestive of other mechanisms playing a role in the selective outgrowth of b12-resistant viruses.


Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/virology , HIV-1/genetics , HIV-1/immunology , Epitopes/genetics , Epitopes/immunology , HIV Antibodies/blood , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/immunology , HIV-1/isolation & purification , HIV-1/physiology , Humans , Mutation, Missense , Neutralization Tests , T-Lymphocytes, Cytotoxic/immunology , Virus Replication
17.
Virology ; 397(1): 224-30, 2010 Feb 05.
Article En | MEDLINE | ID: mdl-19945135

Autologous HIV-1-specific neutralizing antibodies (NAbs) seem unable to inhibit viral replication as they rapidly select for neutralization escape variants. However, NAbs could potentially contribute indirectly to the control of HIV-1 if changes in the viral envelope coinciding with NAb escape would impair viral replication fitness. Here we analyzed the replication kinetics of HIV-1 isolated over the course of infection from five typical progressors, three of whom developed strong autologous neutralizing humoral immunity. Viral replication rate did not correlate with viral sensitivity to autologous serum neutralization or with envelope length or number of potential N-linked glycosylation sites in gp120, suggesting that the flexibility of the viral envelope allows escape from NAbs without the loss of viral fitness. Interestingly, the appearance of rapidly replicating viruses late in infection correlated with lower CD4(+) T-cell counts, suggesting that this viral characteristic may be positively selected when the availability of target cells becomes limiting.


Adaptation, Biological , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/virology , HIV-1/immunology , HIV-1/physiology , Virus Replication , Antibodies, Neutralizing/immunology , CD4 Lymphocyte Count , Cells, Cultured , DNA Mutational Analysis , Glycosylation , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/immunology , HIV-1/isolation & purification , Humans , Leukocytes, Mononuclear/virology , Male , Selection, Genetic , Sequence Analysis, DNA
18.
Virology ; 390(2): 348-55, 2009 Aug 01.
Article En | MEDLINE | ID: mdl-19539340

The conserved nature of the epitopes of the four broadly neutralizing antibodies (BNAbs), b12, 2G12, 2F5, and 4E10, may imply that the sensitivity of HIV-1 for these BNAbs remains fairly constant over the course of infection. Here, we demonstrate that viruses isolated early during the course of infection were mostly sensitive to HIVIg and antibody neutralization, although variation was observed in neutralization sensitivity of coexisting viruses to the different antibodies as well as between viruses from different patients. HIV-1 resistance to HIVIg developed relatively early during follow-up in three out of five patients, while early, b12 sensitive viruses in three out of five patients were replaced by b12 resistant variants relatively late in infection. In contrast, viruses generally remained sensitive to 2F5 and 4E10 neutralization over the course of infection, although 2F5 and/or 4E10 resistant variants did emerge later in infection in four out of five patients. In most patients, HIV-1 resistance to 2F5 or 4E10 did not correlate with mutations at critical amino acid positions in their defined epitopes. Viruses resistant to 2G12-mediated neutralization were present throughout the course of infection. As viral resistance against BNAb-mediated neutralization generally developed when autologous serum neutralizing activity had faded, it seems unlikely that these changes are driven by escape from autologous humoral immunity.


HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/virology , HIV-1/immunology , Immunoglobulin G/immunology , DNA, Viral/chemistry , DNA, Viral/genetics , Epitopes/genetics , Epitopes/immunology , HIV-1/genetics , Humans , Male , Molecular Sequence Data , Mutation, Missense , Neutralization Tests , Proviruses/genetics , Sequence Analysis, DNA
19.
J Virol ; 82(16): 7932-41, 2008 Aug.
Article En | MEDLINE | ID: mdl-18524815

Most human immunodeficiency virus type 1 (HIV-1)-infected individuals develop an HIV-specific neutralizing antibody (NAb) response that selects for escape variants of the virus. Here, we studied autologous NAb responses in five typical CCR5-using progressors in relation to viral NAb escape and molecular changes in the viral envelope (Env) in the period from seroconversion until after AIDS diagnosis. In sera from three patients, high-titer neutralizing activity was observed against the earliest autologous virus variants, followed by declining humoral immune responses against subsequent viral escape variants. Autologous neutralizing activity was undetectable in sera from two patients. Patients with high-titer neutralizing activity in serum showed the strongest positive selection pressure on Env early in infection. In the initial phase of infection, gp160 length and the number of potential N-linked glycosylation sites (PNGS) increased in viruses from all patients. Over the course of infection, positive selection pressure declined as the NAb response subsided, coinciding with reversions of changes in gp160 length and the number of PNGS. A number of identical amino acid changes were observed over the course of infection in the viral quasispecies of different patients. Our results indicate that although neutralizing autologous humoral immunity may have a limited effect on the disease course, it is an important selection pressure in virus evolution early in infection, while declining HIV-specific humoral immunity in later stages may coincide with reversion of NAb-driven changes in Env.


Neutralization Tests , Viral Envelope Proteins/chemistry , Amino Acids/chemistry , Antibody Formation , Binding Sites , CD4-Positive T-Lymphocytes/metabolism , Glycosylation , HIV Antibodies/chemistry , HIV Infections/virology , HIV Seropositivity , Humans , Inhibitory Concentration 50 , Leukocytes, Mononuclear/virology , Receptors, CCR5/metabolism , Sequence Analysis, DNA
20.
J Virol ; 81(16): 8533-42, 2007 Aug.
Article En | MEDLINE | ID: mdl-17522228

The ability of the broadly neutralizing human immunodeficiency virus type 1 (HIV-1) specific human monoclonal antibodies (MAbs) b12, 2G12, 2F5, and 4E10 to neutralize recently transmitted viruses has not yet been explored in detail. We investigated the neutralization sensitivity of subtype B HIV-1 variants obtained from four primary HIV infection cases and six transmission couples (four homosexual and two parenteral) to these MAbs. Sexually transmitted HIV-1 variants isolated within the first 2 months after seroconversion were generally sensitive to 2F5, moderately resistant to 4E10 and b12, and initially resistant but later more sensitive to 2G12 neutralization. In the four homosexual transmission couples, MAb neutralization sensitivity of HIV in recipients did not correlate with the MAb neutralization sensitivity of HIV from their source partners, whereas the neutralization sensitivity of donor and recipient viruses involved in parenteral transmission was more similar. For a fraction (11%) of the HIV-1 variants analyzed here, neutralization by 2G12 could not be predicted by the presence of N-linked glycosylation sites previously described to be involved in 2G12 binding. Resistance to 2F5 and 4E10 neutralization did also not correlate with mutations in the respective core epitopes. Overall, we observed that the neutralization resistance of recently transmitted subtype B HIV-1 variants was relatively high. Although 8 of 10 patients had viruses that were sensitive to neutralization by at least one of the four broadly neutralizing antibodies studied, 4 of 10 patients harbored at least one virus variant that seemed resistant to all four antibodies. Our results suggest that vaccine antigens that only elicit antibodies equivalent to b12, 2G12, 2F5, and 4E10 may not be sufficient to protect against all contemporary HIV-1 variants and that additional cross-neutralizing specificities need to be sought.


Antibodies, Monoclonal/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , AIDS Vaccines/immunology , Amino Acid Sequence , Antigens, Viral/chemistry , Antigens, Viral/immunology , Epitopes/chemistry , Epitopes/immunology , Gene Products, env/chemistry , Gene Products, env/immunology , HIV Infections/transmission , HIV-1/isolation & purification , Homosexuality, Male , Humans , Male , Neutralization Tests
...