Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Diabetes ; 69(4): 603-613, 2020 04.
Article En | MEDLINE | ID: mdl-32005705

Insulin-mediated microvascular recruitment (IMVR) regulates delivery of insulin and glucose to insulin-sensitive tissues. We have previously proposed that perivascular adipose tissue (PVAT) controls vascular function through outside-to-inside communication and through vessel-to-vessel, or "vasocrine," signaling. However, direct experimental evidence supporting a role of local PVAT in regulating IMVR and insulin sensitivity in vivo is lacking. Here, we studied muscles with and without PVAT in mice using combined contrast-enhanced ultrasonography and intravital microscopy to measure IMVR and gracilis artery diameter at baseline and during the hyperinsulinemic-euglycemic clamp. We show, using microsurgical removal of PVAT from the muscle microcirculation, that local PVAT depots regulate insulin-stimulated muscle perfusion and glucose uptake in vivo. We discovered direct microvascular connections between PVAT and the distal muscle microcirculation, or adipomuscular arterioles, the removal of which abolished IMVR. Local removal of intramuscular PVAT altered protein clusters in the connected muscle, including upregulation of a cluster featuring Hsp90ab1 and Hsp70 and downregulation of a cluster of mitochondrial protein components of complexes III, IV, and V. These data highlight the importance of PVAT in vascular and metabolic physiology and are likely relevant for obesity and diabetes.


Adipose Tissue/metabolism , Arterioles/metabolism , Glucose/metabolism , Insulin/pharmacology , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Adipose Tissue/drug effects , Animals , Arterioles/drug effects , Glucose Clamp Technique , Insulin Resistance/physiology , Mice , Microcirculation/drug effects , Mitochondria/drug effects , Mitochondrial Proteins/metabolism , Muscle, Skeletal/blood supply , Muscle, Skeletal/drug effects
2.
Microcirculation ; 27(1): e12588, 2020 01.
Article En | MEDLINE | ID: mdl-31465606

Contrast-enhanced ultrasound is an imaging technique that can be used to quantify microvascular blood volume and blood flow of vital organs in humans. It relies on the use of microbubble contrast agents and ultrasound-based imaging of microbubbles. Over the past decades, both ultrasound contrast agents and experimental techniques to image them have rapidly improved, as did experience among investigators and clinicians. However, these improvements have not yet resulted in uniform guidelines for CEUS when it comes to quantification of tissue perfusion in humans, preventing its uniform and widespread use in research settings. The objective of this review is to provide a methodological overview of CEUS and its development, the influences of hardware and software settings, type and dosage of ultrasound contrast agent, and method of analysis on CEUS-derived perfusion data. Furthermore, we will discuss organ-specific imaging challenges, advantages, and limitations of CEUS.


Contrast Media/therapeutic use , Microbubbles/therapeutic use , Ultrasonography , Humans , Perfusion
3.
Am J Physiol Heart Circ Physiol ; 315(5): H1414-H1424, 2018 11 01.
Article En | MEDLINE | ID: mdl-30028196

Cardiovascular diseases account for ~50% of mortality in patients with chronic kidney disease (CKD). Fibroblast growth factor 23 (FGF23) is independently associated with endothelial dysfunction and cardiovascular mortality. We hypothesized that CKD impairs microvascular endothelial function and that this can be attributed to FGF23. Mice were subjected to partial nephrectomy (5/6Nx) or sham surgery. To evaluate the functional role of FGF23, non-CKD mice received FGF23 injections and CKD mice received FGF23-blocking antibodies after 5/6Nx surgery. To examine microvascular function, myocardial perfusion in vivo and vascular function of gracilis resistance arteries ex vivo were assessed in mice. 5/6Nx surgery blunted ex vivo vasodilator responses to acetylcholine, whereas responses to sodium nitroprusside or endothelin were normal. In vivo FGF23 injections in non-CKD mice mimicked this endothelial defect, and FGF23 antibodies in 5/6Nx mice prevented endothelial dysfunction. Stimulation of microvascular endothelial cells with FGF23 in vitro did not induce ERK phosphorylation. Increased plasma asymmetric dimethylarginine concentrations were increased by FGF23 and strongly correlated with endothelial dysfunction. Increased FGF23 concentration did not mimic impaired endothelial function in the myocardium of 5/6Nx mice. In conclusion, impaired peripheral endothelium-dependent vasodilatation in 5/6Nx mice is mediated by FGF23 and can be prevented by blocking FGF23. These data corroborate FGF23 as an important target to combat cardiovascular disease in CKD. NEW & NOTEWORTHY In the present study, we provide the first evidence that fibroblast growth factor 23 (FGF23) is a cause of peripheral endothelial dysfunction in a model of early chronic kidney disease (CKD) and that endothelial dysfunction in CKD can be prevented by blockade of FGF23. This pathological effect on endothelial cells was induced by long-term exposure of physiological levels of FGF23. Mechanistically, increased plasma asymmetric dimethylarginine concentrations were strongly associated with this endothelial dysfunction in CKD and were increased by FGF23.


Fibroblast Growth Factors/metabolism , Gracilis Muscle/blood supply , Kidney/physiopathology , Microcirculation , Microvessels/metabolism , Renal Insufficiency, Chronic/metabolism , Vascular Resistance , Vasodilation , Animals , Arginine/analogs & derivatives , Arginine/blood , Cells, Cultured , Coronary Circulation , Coronary Vessels/metabolism , Coronary Vessels/physiopathology , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/pharmacology , Humans , Male , Mice, Inbred C57BL , Microcirculation/drug effects , Microvessels/drug effects , Microvessels/physiopathology , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/physiopathology , Signal Transduction/drug effects , Vascular Resistance/drug effects , Vasodilation/drug effects , Vasodilator Agents/pharmacology
4.
Diabetes Obes Metab ; 20(11): 2523-2531, 2018 11.
Article En | MEDLINE | ID: mdl-29885045

AIMS: In type 2 diabetes impaired insulin-induced muscle perfusion is thought to contribute to reduced whole-body glucose uptake. In this study, we examined the effects of iloprost, a stable prostacyclin analogue, on insulin-induced muscle capillary recruitment and whole-body glucose uptake. MATERIALS AND METHODS: In a randomized cross-over design, 12 type 2 diabetes patients (age, 55 [46-69] years; BMI, 33.1 [31.0-39] kg/m2 ) underwent two hyperinsulinaemic-euglycaemic clamps, one with and one without simultaneous low-dose iloprost infusion. Contrast-enhanced ultrasonography of the vastus lateralis muscle was performed before and during the clamp. Muscle capillary recruitment was calculated as percentage change in microvascular blood volume (MBV) before and during the clamp. RESULTS: Insulin infusion reduced skeletal muscle MBV by ~50% compared to the fasting state (fasting, 1.77·10-4 [1.54·10-5 -2.44·10-3 ] arbitrary units (AU); hyperinsulinaemia, 6.69·10-5 [2.68·10-6 -5.72·10-4 ] AU; P = 0.050). Infusion of iloprost prevented this insulin-induced skeletal muscle capillary derecruitment, from (-49.5 [-89.5 to 55.3] %) to (8.0 [-68.8 to 306.6] %), for conditions without and with iloprost, respectively. The rate of glucose disappearance (Rd ) did not change significantly during iloprost infusion (17.3 [10.0-40.8] µmol/kg/min) compared with insulin infusion alone (17.6 [9.9-68.7] µmol/kg/min). CONCLUSIONS: Our data suggest that acute improvement in insulin-stimulated muscle perfusion is not an attractive therapeutic approach to bypass cellular resistance to glucose uptake in type 2 diabetes. Whether long-term improvements in insulin-induced muscle perfusion may prove beneficial for glucose disposal remains to be determined.


Blood Glucose/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetic Angiopathies/prevention & control , Iloprost/administration & dosage , Insulin/pharmacology , Microcirculation/drug effects , Muscle, Skeletal , Aged , Blood Glucose/drug effects , Blood Volume/drug effects , Cross-Over Studies , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/physiopathology , Down-Regulation/drug effects , Female , Humans , Infusions, Intravenous , Male , Middle Aged , Muscle, Skeletal/blood supply , Muscle, Skeletal/drug effects
5.
Am J Physiol Heart Circ Physiol ; 314(3): H381-H391, 2018 03 01.
Article En | MEDLINE | ID: mdl-29101165

Myocardial contrast echocardiography (MCE) offers the opportunity to study myocardial perfusion defects in mice in detail. The value of MCE compared with single-photon emission computed tomography, positron emission tomography, and computed tomography consists of high spatial resolution, the possibility of quantification of blood volume, and relatively low costs. Nevertheless, a number of technical and physiological aspects should be considered to ensure reproducibility among research groups. The aim of this overview is to describe technical aspects of MCE and the physiological parameters that influence myocardial perfusion data obtained with this technique. First, technical aspects of MCE discussed in this technical review are logarithmic compression of ultrasound data by ultrasound systems, saturation of the contrast signal, and acquisition of images during different phases of the cardiac cycle. Second, physiological aspects of myocardial perfusion that are affected by the experimental design are discussed, including the anesthesia regimen, systemic cardiovascular effects of vasoactive agents used, and fluctuations in body temperature that alter myocardial perfusion. When these technical and physiological aspects of MCE are taken into account and adequately standardized, MCE is an easily accessible technique for mice that can be used to study the control of myocardial perfusion by a wide range of factors.


Contrast Media/administration & dosage , Echocardiography , Heart Diseases/diagnostic imaging , Heart/diagnostic imaging , Myocardial Perfusion Imaging/methods , Animals , Coronary Circulation , Disease Models, Animal , Heart/physiopathology , Heart Diseases/physiopathology , Mice , Predictive Value of Tests , Reproducibility of Results
6.
J Vis Exp ; (121)2017 03 20.
Article En | MEDLINE | ID: mdl-28362362

It has been demonstrated that insulin's vascular actions contribute to regulation of insulin sensitivity. Insulin's effects on muscle perfusion regulate postprandial delivery of nutrients and hormones to insulin-sensitive tissues. We here describe a technique for combining intravital microscopy (IVM) and contrast-enhanced ultrasonography (CEUS) of the adductor compartment of the mouse hindlimb to simultaneously visualize muscle resistance arteries and perfusion of the microcirculation in vivo. Simultaneously assessing insulin's effect at multiple levels of the vascular tree is important to study relationships between insulin's multiple vasoactive effects and muscle perfusion. Experiments in this study were performed in mice. First, the tail vein cannula is inserted for the infusion of anesthesia, vasoactive compounds and ultrasound contrast agent (lipid-encapsulated microbubbles). Second, a small incision is made in the groin area to expose the arterial tree of the adductor muscle compartment. The ultrasound probe is then positioned at the contralateral upper hindlimb to view the muscles in cross-section. To assess baseline parameters, the arterial diameter is assessed and microbubbles are subsequently infused at a constant rate to estimate muscle blood flow and microvascular blood volume (MBV). When applied before and during a hyperinsulinemic-euglycemic clamp, combined IVM and CEUS allow assessment of insulin-induced changes of arterial diameter, microvascular muscle perfusion and whole-body insulin sensitivity. Moreover, the temporal relationship between responses of the microcirculation and the resistance arteries to insulin can be quantified. It is also possible to follow-up the mice longitudinally in time, making it a valuable tool to study changes in vascular and whole-body insulin sensitivity.


Femoral Artery/diagnostic imaging , Hindlimb/blood supply , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Muscle, Skeletal/blood supply , Animals , Contrast Media/administration & dosage , Femoral Artery/physiology , Glucose Clamp Technique , Hindlimb/diagnostic imaging , Intravital Microscopy , Mice , Microbubbles , Microcirculation/physiology , Muscle, Skeletal/diagnostic imaging , Ultrasonography , Vasodilation/drug effects
7.
Vascul Pharmacol ; 78: 24-35, 2016 Mar.
Article En | MEDLINE | ID: mdl-26363472

Decreased tissue perfusion increases the risk of developing insulin resistance and cardiovascular disease in obesity, and decreased levels of globular adiponectin (gAdn) have been proposed to contribute to this risk. We hypothesized that gAdn controls insulin's vasoactive effects through AMP-activated protein kinase (AMPK), specifically its α2 subunit, and studied the mechanisms involved. In healthy volunteers, we found that decreased plasma gAdn levels in obese subjects associate with insulin resistance and reduced capillary perfusion during hyperinsulinemia. In cultured human microvascular endothelial cells (HMEC), gAdn increased AMPK activity. In isolated muscle resistance arteries gAdn uncovered insulin-induced vasodilation by selectively inhibiting insulin-induced activation of ERK1/2, and the AMPK inhibitor compound C as well as genetic deletion of AMPKα2 blunted insulin-induced vasodilation. In HMEC deletion of AMPKα2 abolished insulin-induced Ser(1177) phosphorylation of eNOS. In mice we confirmed that AMPKα2 deficiency decreases insulin sensitivity, and this was accompanied by decreased muscle microvascular blood volume during hyperinsulinemia in vivo. This impairment was accompanied by a decrease in arterial Ser(1177) phosphorylation of eNOS, which closely related to AMPK activity. In conclusion, globular adiponectin controls muscle perfusion during hyperinsulinemia through AMPKα2, which determines the balance between NO and ET-1 activity in muscle resistance arteries. Our findings provide a novel mechanism linking reduced gAdn-AMPK signaling to insulin resistance and impaired organ perfusion.


AMP-Activated Protein Kinases/metabolism , Adiponectin/metabolism , Insulin/metabolism , Obesity/complications , Adult , Animals , Endothelial Cells/metabolism , Endothelin-1/metabolism , Female , Humans , Insulin/administration & dosage , Insulin/blood , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Middle Aged , Nitric Oxide/metabolism , Obesity/metabolism , Rats , Rats, Wistar , Signal Transduction , Vasodilation/physiology
...