Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Front Immunol ; 15: 1297893, 2024.
Article En | MEDLINE | ID: mdl-38504977

Introduction: Atherosclerosis is a lipid-driven inflammatory disease of the arterial wall, and the underlying cause of the majority of cardiovascular diseases. Recent advances in high-parametric immunophenotyping of immune cells indicate that T cells constitute the major leukocyte population in the atherosclerotic plaque. The E3 ubiquitin ligase Casitas B-lymphoma proto-oncogene-B (CBL-B) is a critical intracellular regulator that sets the threshold for T cell activation, making CBL-B a potential therapeutic target to modulate inflammation in atherosclerosis. We previously demonstrated that complete knock-out of CBL-B aggravated atherosclerosis in Apoe-/- mice, which was attributed to increased macrophage recruitment and increased CD8+ T cell activation in the plaque. Methods: To further study the T cell specific role of CBL-B in atherosclerosis, Apoe-/- CD4cre Cblb fl/fl (Cbl-bcKO) mice and Apoe-/-CD4WTCblbfl/fl littermates (Cbl-bfl/fl) were fed a high cholesterol diet for ten weeks. Results: Cbl-bcKO mice had smaller atherosclerotic lesions in the aortic arch and root compared to Cbl-bfl/fl, and a substantial increase in CD3+ T cells in the plaque. Collagen content in the plaque was decreased, while other plaque characteristics including plaque necrotic core, macrophage content, and smooth muscle cell content, remained unchanged. Mice lacking T cell CBL-B had a 1.4-fold increase in CD8+ T cells and a 1.8-fold increase in regulatory T cells in the spleen. Splenic CD4+ and CD8+ T cells had increased expression of C-X-C Motif Chemokine Receptor 3 (CXCR3) and interferon-γ (IFN-γ), indicating a T helper 1 (Th1)-like/effector CD8+ T cell-like phenotype. Conclusion: In conclusion, Cbl-bcKO mice have reduced atherosclerosis but show increased T cell accumulation in the plaque accompanied by systemic T cell activation.


Atherosclerosis , Lymphoma , Plaque, Atherosclerotic , Animals , Mice , Apolipoproteins E/genetics , Atherosclerosis/metabolism , CD8-Positive T-Lymphocytes , Mice, Knockout , Plaque, Atherosclerotic/pathology , Proto-Oncogene Proteins c-cbl/genetics , Proto-Oncogene Proteins c-cbl/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism
2.
Eur J Immunol ; 53(12): e2350520, 2023 12.
Article En | MEDLINE | ID: mdl-37683186

Inhibition of the co-stimulatory ligand CD40L has shown beneficial effects in many experimental models of autoimmune disease and inflammation. Here, we show that CD40L deficiency in T cells in mice causes a reduction of CD4+ T-cell activation and specifically a strong reduction in IFN-γ-producing Th1 cells. In vitro, we could not reproduce this antigen presenting cell-dependent effects, but found that T-cell CD40L affects cell death and proliferation. We identified receptor of activated C kinase, the canonical PKC binding partner and known to drive proliferation and apoptosis, as a mediator of CD40L reverse signaling. Furthermore, we found that CD40L clustering stabilizes IFN-γ mediated Th1 polarization through STAT1, a known binding partner of receptor of activated C kinase. Together this highlights the importance of both CD40L forward and reverse signaling.


CD40 Ligand , Lymphocyte Activation , Mice , Animals , Receptors for Activated C Kinase , Th1 Cells , Antigen-Presenting Cells , CD40 Antigens , CD4-Positive T-Lymphocytes
3.
Front Cardiovasc Med ; 10: 1171764, 2023.
Article En | MEDLINE | ID: mdl-37215541

Background: Atherosclerosis is the underlying cause of many cardiovascular diseases, such as myocardial infarction or stroke. B cells, and their production of pro- and anti-atherogenic antibodies, play an important role in atherosclerosis. In B cells, TRAF2 and NCK-interacting Kinase (TNIK), a germinal center kinase, was shown to bind to TNF-receptor associated factor 6 (TRAF6), and to be involved in JNK and NF-κB signaling in human B cells, a pathway associated with antibody production. Objective: We here investigate the role of TNIK-deficient B cells in atherosclerosis. Results: ApoE-/-TNIKfl/fl (TNIKBWT) and ApoE-/-TNIKfl/flCD19-cre (TNIKBKO) mice received a high cholesterol diet for 10 weeks. Atherosclerotic plaque area did not differ between TNIKBKO and TNIKBWT mice, nor was there any difference in plaque necrotic core, macrophage, T cell, α-SMA and collagen content. B1 and B2 cell numbers did not change in TNIKBKO mice, and marginal zone, follicular or germinal center B cells were unaffected. Total IgM and IgG levels, as well as oxidation specific epitope (OSE) IgM and IgG levels, did not change in absence of B cell TNIK. In contrast, plasma IgA levels were decreased in TNIKBKO mice, whereas the number of IgA+ B cells in intestinal Peyer's patches increased. No effects could be detected on T cell or myeloid cell numbers or subsets. Conclusion: We here conclude that in hyperlipidemic ApoE-/- mice, B cell specific TNIK deficiency does not affect atherosclerosis.

4.
Eur Heart J Open ; 3(2): oead013, 2023 Mar.
Article En | MEDLINE | ID: mdl-36969380

Aims: Hyperlipidemia and T cell driven inflammation are important drivers of atherosclerosis, the main underlying cause of cardiovascular disease. Here, we detailed the effects of hyperlipidemia on T cells. Methods and results: In vitro, exposure of human and murine CD4+ T cells to very low-density lipoprotein (VLDL), but not to low-density lipoprotein (LDL) resulted in upregulation of Th1 associated pathways. VLDL was taken up via a CD36-dependent pathway and resulted in membrane stiffening and a reduction in lipid rafts. To further detail this response in vivo, T cells of mice lacking the LDL receptor (LDLr), which develop a strong increase in VLDL cholesterol and triglyceride levels upon high cholesterol feeding were investigated. CD4+ T cells of hyperlipidemic Ldlr-/- mice exhibited an increased expression of the C-X-C-chemokine receptor 3 (CXCR3) and produced more interferon-γ (IFN-γ). Gene set enrichment analysis identified IFN-γ-mediated signaling as the most upregulated pathway in hyperlipidemic T cells. However, the classical Th1 associated transcription factor profile with strong upregulation of Tbet and Il12rb2 was not observed. Hyperlipidemia did not affect levels of the CD4+ T cell's metabolites involved in glycolysis or other canonical metabolic pathways but enhanced amino acids levels. However, CD4+ T cells of hyperlipidemic mice showed increased cholesterol accumulation and an increased arachidonic acid (AA) to docosahexaenoic acid (DHA) ratio, which was associated with inflammatory T cell activation. Conclusions: Hyperlipidemia, and especially its VLDL component induces an atypical Th1 response in CD4+ T cells. Underlying mechanisms include CD36 mediated uptake of VLDL, and an altered AA/DHA ratio.

5.
Haematologica ; 108(7): 1873-1885, 2023 Jul 01.
Article En | MEDLINE | ID: mdl-36475519

The co-stimulatory CD40-CD40L dyad plays an important role in chronic inflammatory diseases associated with aging. Although CD40 is mainly expressed by immune cells, CD40 is also present on adipocytes. We aimed to delineate the role of adipocyte CD40 in the aging hematopoietic system and evaluated the effects of adipocyte CD40 deficiency on cardiometabolic diseases. Adult adipocyte CD40-deficient mice (AdiCD40KO) mice had a decrease in bone marrow hematopoietic stem cells (Lin-Sca+cKit+, LSK) and common lymphoid progenitors, which was associated with increased bone marrow adiposity and T-cell activation, along with elevated plasma corticosterone levels, a phenotype that became more pronounced with age. Atherosclerotic AdiCD40koApoE-/- (CD40AKO) mice also displayed changes in the LSK population, showing increased myeloid and lymphoid multipotent progenitors, and augmented corticosterone levels. Increased T-cell activation could be observed in bone marrow, spleen, and adipose tissue, while the numbers of B cells were decreased. Although atherosclerosis was reduced in CD40AKO mice, plaques contained more activated T cells and larger necrotic cores. Analysis of peripheral adipose tissue in a diet-induced model of obesity revealed that obese AdiCD40KO mice had increased T-cell activation in adipose tissue and lymphoid organs, but decreased weight gain and improved insulin sensitivity, along with increased fat oxidation. In conclusion, adipocyte CD40 plays an important role in maintaining immune cell homeostasis in bone marrow during aging and chronic inflammatory diseases, particularly of the lymphoid populations. Although adipocyte CD40 deficiency reduces atherosclerosis burden and ameliorates diet-induced obesity, the accompanying T-cell activation may eventually aggravate cardiometabolic diseases.


Atherosclerosis , Cardiovascular Diseases , Animals , Mice , Corticosterone/pharmacology , Adipocytes , Obesity , Inflammation , CD40 Antigens/genetics , CD40 Ligand , Hematopoiesis , Mice, Inbred C57BL
6.
Cardiovasc Res ; 119(5): 1146-1160, 2023 05 22.
Article En | MEDLINE | ID: mdl-35587037

AIMS: CD40 and its ligand, CD40L, play a critical role in driving atherosclerotic plaque development. Disrupted CD40-signalling reduces experimental atherosclerosis and induces a favourable stable plaque phenotype. We recently showed that small molecule-based inhibition of CD40-tumour necrosis factor receptor associated factor-6 interactions attenuates atherosclerosis in hyperlipidaemic mice via macrophage-driven mechanisms. The present study aims to detail the function of myeloid CD40 in atherosclerosis using myeloid-specific CD40-deficient mice. METHOD AND RESULTS: Cd40flox/flox and LysM-cre Cd40flox/flox mice on an Apoe-/- background were generated (CD40wt and CD40mac-/-, respectively). Atherosclerotic lesion size, as well as plaque macrophage content, was reduced in CD40mac-/- compared to CD40wt mice, and their plaques displayed a reduction in necrotic core size. Transcriptomics analysis of the CD40mac-/- atherosclerotic aorta revealed downregulated pathways of immune pathways and inflammatory responses. Loss of CD40 in macrophages changed the representation of aortic macrophage subsets. Mass cytometry analysis revealed a higher content of a subset of alternative or resident-like CD206+CD209b- macrophages in the atherosclerotic aorta of CD40mac-/- compared to CD40wt mice. RNA-sequencing of bone marrow-derived macrophages of CD40mac-/- mice demonstrated upregulation of genes associated with alternatively activated macrophages (including Folr2, Thbs1, Sdc1, and Tns1). CONCLUSIONS: We here show that absence of CD40 signalling in myeloid cells reduces atherosclerosis and limits systemic inflammation by preventing a shift in macrophage polarization towards pro-inflammatory states. Our study confirms the merit of macrophage-targeted inhibition of CD40 as a valuable therapeutic strategy to combat atherosclerosis.


Atherosclerosis , Plaque, Atherosclerotic , Animals , Mice , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Macrophages/metabolism , Plaque, Atherosclerotic/metabolism , Signal Transduction , Aorta/pathology , CD40 Antigens/genetics
7.
Nat Commun ; 12(1): 3754, 2021 06 18.
Article En | MEDLINE | ID: mdl-34145241

Atherosclerosis is a major underlying cause of cardiovascular disease. Previous studies showed that inhibition of the co-stimulatory CD40 ligand (CD40L)-CD40 signaling axis profoundly attenuates atherosclerosis. As CD40L exerts multiple functions depending on the cell-cell interactions involved, we sought to investigate the function of the most relevant CD40L-expressing cell types in atherosclerosis: T cells and platelets. Atherosclerosis-prone mice with a CD40L-deficiency in CD4+ T cells display impaired Th1 polarization, as reflected by reduced interferon-γ production, and smaller atherosclerotic plaques containing fewer T-cells, smaller necrotic cores, an increased number of smooth muscle cells and thicker fibrous caps. Mice with a corresponding CD40-deficiency in CD11c+ dendritic cells phenocopy these findings, suggesting that the T cell-dendritic cell CD40L-CD40 axis is crucial in atherogenesis. Accordingly, sCD40L/sCD40 and interferon-γ concentrations in carotid plaques and plasma are positively correlated in patients with cerebrovascular disease. Platelet-specific deficiency of CD40L does not affect atherogenesis but ameliorates atherothrombosis. Our results establish divergent and cell-specific roles of CD40L-CD40 in atherosclerosis, which has implications for therapeutic strategies targeting this pathway.


Atherosclerosis/pathology , CD4-Positive T-Lymphocytes/metabolism , CD40 Antigens/metabolism , CD40 Ligand/metabolism , Interferon-gamma/metabolism , Plaque, Atherosclerotic/pathology , Animals , Blood Platelets/metabolism , CD4-Positive T-Lymphocytes/cytology , Cardiovascular Diseases/pathology , Dendritic Cells/immunology , Mice , Mice, Knockout , Myocytes, Smooth Muscle/cytology , Signal Transduction/physiology , Thrombosis/pathology
10.
Eur Heart J ; 40(4): 372-382, 2019 01 21.
Article En | MEDLINE | ID: mdl-30452556

Aims: The E3-ligase CBL-B (Casitas B-cell lymphoma-B) is an important negative regulator of T cell activation that is also expressed in macrophages. T cells and macrophages mediate atherosclerosis, but their regulation in this disease remains largely unknown; thus, we studied the function of CBL-B in atherogenesis. Methods and results: The expression of CBL-B in human atherosclerotic plaques was lower in advanced lesions compared with initial lesions and correlated inversely with necrotic core area. Twenty weeks old Cblb-/-Apoe-/- mice showed a significant increase in plaque area in the aortic arch, where initial plaques were present. In the aortic root, a site containing advanced plaques, lesion area rose by 40%, accompanied by a dramatic change in plaque phenotype. Plaques contained fewer macrophages due to increased apoptosis, larger necrotic cores, and more CD8+ T cells. Cblb-/-Apoe-/- macrophages exhibited enhanced migration and increased cytokine production and lipid uptake. Casitas B-cell lymphoma-B deficiency increased CD8+ T cell numbers, which were protected against apoptosis and regulatory T cell-mediated suppression. IFNγ and granzyme B production was enhanced in Cblb-/-Apoe-/- CD8+ T cells, which provoked macrophage killing. Depletion of CD8+ T cells in Cblb-/-Apoe-/- bone marrow chimeras rescued the phenotype, indicating that CBL-B controls atherosclerosis mainly through its function in CD8+ T cells. Conclusion: Casitas B-cell lymphoma-B expression in human plaques decreases during the progression of atherosclerosis. As an important regulator of immune responses in experimental atherosclerosis, CBL-B hampers macrophage recruitment and activation during initial atherosclerosis and limits CD8+ T cell activation and CD8+ T cell-mediated macrophage death in advanced atherosclerosis, thereby preventing the progression towards high-risk plaques.


Atherosclerosis/etiology , CD8-Positive T-Lymphocytes/immunology , Lymphoma, B-Cell/complications , Macrophages/pathology , Oncogene Protein v-cbl/metabolism , Plaque, Atherosclerotic/etiology , Animals , Apoptosis , Atherosclerosis/metabolism , Atherosclerosis/pathology , Disease Models, Animal , Humans , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology
11.
J Pathol ; 247(4): 471-480, 2019 04.
Article En | MEDLINE | ID: mdl-30471110

The costimulatory CD40L-CD40 dyad plays a major role in multiple sclerosis (MS). CD40 is highly expressed on MHCII+ B cells, dendritic cells and macrophages in human MS lesions. Here we investigated the role of the CD40 downstream signaling intermediates TNF receptor-associated factor 2 (TRAF2) and TRAF6 in MHCII+ cells in experimental autoimmune encephalomyelitis (EAE). Both MHCII-CD40-Traf2-/- and MHCII-CD40-Traf6-/- mice showed a reduction in clinical signs of EAE and prevented demyelination. However, only MHCII-CD40-Traf6-/- mice displayed a decrease in myeloid and lymphoid cell infiltration into the CNS that was accompanied by reduced levels of TNF-α, IL-6 and IFN-γ. As CD40-TRAF6 interactions predominantly occur in macrophages, we subjected CD40flfl LysMcre mice to EAE. This myeloid-specific deletion of CD40 resulted in a significant reduction in EAE severity, reduced CNS inflammation and demyelination. In conclusion, the CD40-TRAF6 signaling pathway in MHCII+ cells plays a key role in neuroinflammation and demyelination during EAE. Concomitant with the fact that CD40-TRAF6 interactions are predominant in macrophages, depletion of myeloid CD40 also reduces neuroinflammation. CD40-TRAF6 interactions thus represent a promising therapeutic target for MS. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


CD40 Antigens/physiology , Encephalomyelitis, Autoimmune, Experimental/immunology , Macrophages/immunology , Signal Transduction/immunology , TNF Receptor-Associated Factor 6/physiology , Animals , Autoantibodies/metabolism , CD40 Antigens/deficiency , CD40 Ligand/physiology , Cytokines/metabolism , Female , Immunoglobulin G/immunology , Mice, Inbred C57BL , Multiple Sclerosis/immunology , Myelin-Oligodendrocyte Glycoprotein/immunology , Neuritis/immunology
12.
J Biol Chem ; 293(39): 15070-15083, 2018 09 28.
Article En | MEDLINE | ID: mdl-30111591

Gene targeting via homologous recombination can occasionally result in incomplete disruption of the targeted gene. Here, we show that a widely used Nur77-deficient transgenic mouse model expresses a truncated protein encoding for part of the N-terminal domain of nuclear receptor Nur77. This truncated Nur77 protein is absent in a newly developed Nur77-deficient mouse strain generated using Cre-Lox recombination. Comparison of these two mouse strains using immunohistochemistry, flow cytometry, and colony-forming assays shows that homologous recombination-derived Nur77-deficient mice, but not WT or Cre-Lox-derived Nur77-deficient mice, suffer from liver immune cell infiltrates, loss of splenic architecture, and increased numbers of bone marrow hematopoietic stem cells and splenic colony-forming cells with age. Mechanistically, we demonstrate that the truncated Nur77 N-terminal domain protein maintains the stability and activity of hypoxia-inducible factor (HIF)-1, a transcription factor known to regulate bone marrow homeostasis. Additionally, a previously discovered, but uncharacterized, human Nur77 transcript variant that encodes solely for its N-terminal domain, designated TR3ß, can also stabilize and activate HIF-1α. Meta-analysis of publicly available microarray data sets shows that TR3ß is highly expressed in human bone marrow cells and acute myeloid leukemia samples. In conclusion, our study provides evidence that a transgenic mouse model commonly used to study the biological function of Nur77 has several major drawbacks, while simultaneously identifying the importance of nongenomic Nur77 activity in the regulation of bone marrow homeostasis.


Bone Marrow Cells/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Protein Domains/genetics , Animals , Bone Marrow/metabolism , Bone Marrow/pathology , Flow Cytometry , Gene Expression Regulation/genetics , Homeostasis/genetics , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Mice , Mice, Transgenic , Nuclear Receptor Subfamily 4, Group A, Member 1/chemistry
13.
J Am Coll Cardiol ; 71(5): 527-542, 2018 02 06.
Article En | MEDLINE | ID: mdl-29406859

BACKGROUND: Disrupting the costimulatory CD40-CD40L dyad reduces atherosclerosis, but can result in immune suppression. The authors recently identified small molecule inhibitors that block the interaction between CD40 and tumor necrosis factor receptor-associated factor (TRAF) 6 (TRAF-STOPs), while leaving CD40-TRAF2/3/5 interactions intact, thereby preserving CD40-mediated immunity. OBJECTIVES: This study evaluates the potential of TRAF-STOP treatment in atherosclerosis. METHODS: The effects of TRAF-STOPs on atherosclerosis were investigated in apolipoprotein E deficient (Apoe-/-) mice. Recombinant high-density lipoprotein (rHDL) nanoparticles were used to target TRAF-STOPs to macrophages. RESULTS: TRAF-STOP treatment of young Apoe-/- mice reduced atherosclerosis by reducing CD40 and integrin expression in classical monocytes, thereby hampering monocyte recruitment. When Apoe-/- mice with established atherosclerosis were treated with TRAF-STOPs, plaque progression was halted, and plaques contained an increase in collagen, developed small necrotic cores, and contained only a few immune cells. TRAF-STOP treatment did not impair "classical" immune pathways of CD40, including T-cell proliferation and costimulation, Ig isotype switching, or germinal center formation, but reduced CD40 and ß2-integrin expression in inflammatory monocytes. In vitro testing and transcriptional profiling showed that TRAF-STOPs are effective in reducing macrophage migration and activation, which could be attributed to reduced phosphorylation of signaling intermediates of the canonical NF-κB pathway. To target TRAF-STOPs specifically to macrophages, TRAF-STOP 6877002 was incorporated into rHDL nanoparticles. Six weeks of rHDL-6877002 treatment attenuated the initiation of atherosclerosis in Apoe-/- mice. CONCLUSIONS: TRAF-STOPs can overcome the current limitations of long-term CD40 inhibition in atherosclerosis and have the potential to become a future therapeutic for atherosclerosis.


Atherosclerosis/pathology , Atherosclerosis/prevention & control , CD40 Ligand/antagonists & inhibitors , Macrophages/drug effects , Signal Transduction/drug effects , TNF Receptor-Associated Factor 6/antagonists & inhibitors , Aniline Compounds/pharmacology , Animals , Cell Culture Techniques , Cell Movement/drug effects , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Monocytes/drug effects , Propiophenones/pharmacology
14.
BMC Genomics ; 17: 162, 2016 Mar 01.
Article En | MEDLINE | ID: mdl-26932821

BACKGROUND: The nuclear orphan receptor Nur77 (NR4A1, TR3, or NGFI-B) has been shown to modulate the inflammatory response of macrophages. To further elucidate the role of Nur77 in macrophage physiology, we compared the transcriptome of bone marrow-derived macrophages (BMM) from wild-type (WT) and Nur77-knockout (KO) mice. RESULTS: In line with previous observations, SDF-1α (CXCL12) was among the most upregulated genes in Nur77-deficient BMM and we demonstrated that Nur77 binds directly to the SDF-1α promoter, resulting in inhibition of SDF-1α expression. The cytokine receptor CX3CR1 was strongly downregulated in Nur77-KO BMM, implying involvement of Nur77 in macrophage tolerance. Ingenuity pathway analyses (IPA) to identify canonical pathways regulation and gene set enrichment analyses (GSEA) revealed a potential role for Nur77 in extracellular matrix homeostasis. Nur77-deficiency increased the collagen content of macrophage extracellular matrix through enhanced expression of several collagen subtypes and diminished matrix metalloproteinase (MMP)-9 activity. IPA upstream regulator analyses discerned the small GTPase Rac1 as a novel regulator of Nur77-mediated gene expression. We identified an inhibitory feedback loop with increased Rac1 activity in Nur77-KO BMM, which may explain the augmented phagocytic activity of these cells. Finally, we predict multiple chronic inflammatory diseases to be influenced by macrophage Nur77 expression. GSEA and IPA associated Nur77 to osteoarthritis, chronic obstructive pulmonary disease, rheumatoid arthritis, psoriasis, and allergic airway inflammatory diseases. CONCLUSIONS: Altogether these data identify Nur77 as a modulator of macrophage function and an interesting target to treat chronic inflammatory disease.


Extracellular Matrix/metabolism , Immune Tolerance , Inflammation/metabolism , Macrophages/cytology , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Phagocytosis , Animals , CX3C Chemokine Receptor 1 , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Collagen/metabolism , Gene Expression Regulation , Homeostasis , Inflammation/genetics , Macrophages/metabolism , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Neuropeptides/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Promoter Regions, Genetic , RAW 264.7 Cells , Receptors, Chemokine/genetics , Receptors, Chemokine/metabolism , Transcriptome , rac1 GTP-Binding Protein/metabolism
15.
PLoS One ; 10(9): e0138459, 2015.
Article En | MEDLINE | ID: mdl-26389595

BACKGROUND: The introduction of drug-eluting stents (DES) has dramatically reduced restenosis rates compared with bare metal stents, but in-stent thrombosis remains a safety concern, necessitating prolonged dual anti-platelet therapy. The drug 6-Mercaptopurine (6-MP) has been shown to have beneficial effects in a cell-specific fashion on smooth muscle cells (SMC), endothelial cells and macrophages. We generated and analyzed a novel bioresorbable polymer coated DES, releasing 6-MP into the vessel wall, to reduce restenosis by inhibiting SMC proliferation and decreasing inflammation, without negatively affecting endothelialization of the stent surface. METHODS: Stents spray-coated with a bioresorbable polymer containing 0, 30 or 300 µg 6-MP were implanted in the iliac arteries of 17 male New Zealand White rabbits. Animals were euthanized for stent harvest 1 week after implantation for evaluation of cellular stent coverage and after 4 weeks for morphometric analyses of the lesions. RESULTS: Four weeks after implantation, the high dose of 6-MP attenuated restenosis with 16% compared to controls. Reduced neointima formation could at least partly be explained by an almost 2-fold induction of the cell cycle inhibiting kinase p27Kip1. Additionally, inflammation score, the quantification of RAM11-positive cells in the vessel wall, was significantly reduced in the high dose group with 23% compared to the control group. Evaluation with scanning electron microscopy showed 6-MP did not inhibit strut coverage 1 week after implantation. CONCLUSION: We demonstrate that novel stents coated with a bioresorbable polymer coating eluting 6-MP inhibit restenosis and attenuate inflammation, while stimulating endothelial coverage. The 6-MP-eluting stents demonstrate that inhibition of restenosis without leaving uncovered metal is feasible, bringing stents without risk of late thrombosis one step closer to the patient.


Drug-Eluting Stents/adverse effects , Iliac Artery/drug effects , Immunosuppressive Agents/administration & dosage , Inflammation/prevention & control , Mercaptopurine/administration & dosage , Neointima/prevention & control , Animals , Coated Materials, Biocompatible/chemistry , Iliac Artery/pathology , Iliac Artery/surgery , Immunosuppressive Agents/therapeutic use , Inflammation/etiology , Inflammation/immunology , Inflammation/pathology , Male , Mercaptopurine/therapeutic use , Neointima/etiology , Neointima/immunology , Neointima/pathology , Polymers/chemistry , Rabbits
16.
PLoS One ; 10(8): e0133598, 2015.
Article En | MEDLINE | ID: mdl-26241646

Nuclear receptor Nur77, also referred to as NR4A1 or TR3, plays an important role in innate and adaptive immunity. Nur77 is crucial in regulating the T helper 1/regulatory T-cell balance, is expressed in macrophages and drives M2 macrophage polarization. In this study we aimed to define the function of Nur77 in inflammatory bowel disease. In wild-type and Nur77-/- mice, colitis development was studied in dextran sodium sulphate (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced models. To understand the underlying mechanism, Nur77 was overexpressed in macrophages and gut epithelial cells. Nur77 protein is expressed in colon tissues from Crohn's disease and Ulcerative colitis patients and colons from colitic mice in inflammatory cells and epithelium. In both mouse colitis models inflammation was increased in Nur77-/- mice. A higher neutrophil influx and enhanced IL-6, MCP-1 and KC production was observed in Nur77-deficient colons after DSS-treatment. TNBS-induced influx of T-cells and inflammatory monocytes into the colon was higher in Nur77-/- mice, along with increased expression of MCP-1, TNFα and IL-6, and decreased Foxp3 RNA expression, compared to wild-type mice. Overexpression of Nur77 in lipopolysaccharide activated RAW macrophages resulted in up-regulated IL-10 and downregulated TNFα, MIF-1 and MCP-1 mRNA expression through NFκB repression. Nur77 also strongly decreased expression of MCP-1, CXCL1, IL-8, MIP-1α and TNFα in gut epithelial Caco-2 cells. Nur77 overexpression suppresses the inflammatory status of both macrophages and gut epithelial cells and together with the in vivo mouse data this supports that Nur77 has a protective function in experimental colitis. These findings may have implications for development of novel targeted treatment strategies regarding inflammatory bowel disease and other inflammatory diseases.


Colitis, Ulcerative/metabolism , Colitis/metabolism , Crohn Disease/metabolism , Macrophages/metabolism , NF-kappa B/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/immunology , Animals , Cell Line , Colitis/chemically induced , Colitis/immunology , Colitis, Ulcerative/pathology , Colon/metabolism , Colon/pathology , Crohn Disease/pathology , Cytokines/biosynthesis , Cytokines/genetics , Dextran Sulfate/toxicity , Disease Models, Animal , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Forkhead Transcription Factors/biosynthesis , Forkhead Transcription Factors/genetics , Gene Expression Regulation , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Receptor Subfamily 4, Group A, Member 1/deficiency , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , RAW 264.7 Cells , Trinitrobenzenesulfonic Acid/toxicity
17.
J Chem Inf Model ; 55(2): 294-307, 2015 Feb 23.
Article En | MEDLINE | ID: mdl-25622654

The CD154-CD40 receptor complex plays a pivotal role in several inflammatory pathways. Attempts to inhibit the formation of this complex have resulted in systemic side effects. Downstream inhibition of the CD40 signaling pathway therefore seems a better way to ameliorate inflammatory disease. To relay a signal, the CD40 receptor recruits adapter proteins called tumor necrosis factor receptor-associated factors (TRAFs). CD40-TRAF6 interactions are known to play an essential role in several inflammatory diseases. We used in silico, in vitro, and in vivo experiments to identify and characterize compounds that block CD40-TRAF6 interactions. We present in detail our drug docking and optimization pipeline and show how we used it to find lead compounds that reduce inflammation in models of peritonitis and sepsis. These compounds appear to be good leads for drug development, given the observed absence of side effects and their demonstrated efficacy for peritonitis and sepsis in mouse models.


Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , CD40 Antigens/antagonists & inhibitors , Drug Discovery/methods , Small Molecule Libraries , TNF Receptor-Associated Factor 6/antagonists & inhibitors , Animals , Anti-Inflammatory Agents/toxicity , Cell Line , Databases, Chemical , High-Throughput Screening Assays , Inflammation/genetics , Inflammation/metabolism , Ligands , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Docking Simulation , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Peritonitis/drug therapy , Protein Binding , Sepsis/drug therapy
18.
Mol Cell Biol ; 35(1): 52-62, 2015 Jan.
Article En | MEDLINE | ID: mdl-25332231

The LIM-only protein FHL2 is expressed in smooth muscle cells (SMCs) and inhibits SMC-rich-lesion formation. To further elucidate the role of FHL2 in SMCs, we compared the transcriptomes of SMCs derived from wild-type (WT) and FHL2 knockout (KO) mice. This revealed that in addition to the previously recognized involvement of FHL2 in SMC proliferation, the cholesterol synthesis and liver X receptor (LXR) pathways are altered in the absence of FHL2. Using coimmunoprecipitation experiments, we found that FHL2 interacts with the two LXR isoforms, LXRα and LXRß. Furthermore, FHL2 strongly enhances transcriptional activity of LXR element (LXRE)-containing reporter constructs. Chromatin immunoprecipitation (ChIP) experiments on the ABCG1 promoter revealed that FHL2 enhances the association of LXRß with DNA. In line with these observations, we observed reduced basal transcriptional LXR activity in FHL2-KO SMCs compared to WT SMCs. This was also reflected in reduced expression of LXR target genes in intact aorta and aortic SMCs of FHL2-KO mice. Functionally, the absence of FHL2 resulted in attenuated cholesterol efflux to both ApoA-1 and high-density lipoprotein (HDL), in agreement with reduced LXR signaling. Collectively, our findings demonstrate that FHL2 is a transcriptional coactivator of LXRs and points toward FHL2 being an important determinant of cholesterol metabolism in SMCs.


LIM-Homeodomain Proteins/metabolism , Lipid Metabolism , Muscle Proteins/metabolism , Myocytes, Smooth Muscle/metabolism , Orphan Nuclear Receptors/metabolism , Transcription Factors/metabolism , Animals , Aorta/metabolism , Cell Proliferation , Cholesterol/metabolism , DNA/metabolism , HeLa Cells , Homeostasis/physiology , Humans , Lipoproteins, HDL/metabolism , Liver X Receptors , Mice , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Signal Transduction
19.
Biochim Biophys Acta ; 1843(11): 2543-2555, 2014 Nov.
Article En | MEDLINE | ID: mdl-24975497

The NR4A subfamily of nuclear receptors consists of three mammalian members: Nur77, Nurr1, and NOR-1. The NR4A receptors are involved in essential physiological processes such as adaptive and innate immune cell differentiation, metabolism and brain function. They act as transcription factors that directly modulate gene expression, but can also form trans-repressive complexes with other transcription factors. In contrast to steroid hormone nuclear receptors such as the estrogen receptor or the glucocorticoid receptor, no ligands have been described for the NR4A receptors. This lack of known ligands might be explained by the structure of the ligand-binding domain of NR4A receptors, which shows an active conformation and a ligand-binding pocket that is filled with bulky amino acid side-chains. Other mechanisms, such as transcriptional control, post-translational modifications and protein-protein interactions therefore seem to be more important in regulating the activity of the NR4A receptors. For Nur77, over 80 interacting proteins (the interactome) have been identified so far, and roughly half of these interactions has been studied in more detail. Although the NR4As show some overlap in interacting proteins, less information is available on the interactome of Nurr1 and NOR-1. Therefore, the present review will describe the current knowledge on the interactomes of all three NR4A nuclear receptors with emphasis on Nur77.

20.
PLoS One ; 9(4): e94931, 2014.
Article En | MEDLINE | ID: mdl-24736599

The LIM-only protein FHL2, also known as DRAL or SLIM3, has a function in fine-tuning multiple physiological processes. FHL2 is expressed in the vessel wall in smooth muscle cells (SMCs) and endothelial cells and conflicting data have been reported on the regulatory function of FHL2 in SMC phenotype transition. At present the function of FHL2 in SMCs in vascular injury is unknown. Therefore, we studied the role of FHL2 in SMC-rich lesion formation. In response to carotid artery ligation FHL2-deficient (FHL2-KO) mice showed accelerated lesion formation with enhanced Ki67 expression compared with wild-type (WT)-mice. Consistent with these findings, cultured SMCs from FHL2-KO mice showed increased proliferation through enhanced phosphorylation of extracellular-regulated kinase-1/2 (ERK1/2) and induction of CyclinD1 expression. Overexpression of FHL2 in SMCs inhibited CyclinD1 expression and CyclinD1-knockdown blocked the enhanced proliferation of FHL2-KO SMCs. We also observed increased CyclinD1 promoter activity in FHL2-KO SMCs, which was reduced upon ERK1/2 inhibition. Furthermore, FHL2-KO SMCs showed enhanced migration compared with WT SMCs. In conclusion, FHL2 deficiency in mice results in exacerbated SMC-rich lesion formation involving increased proliferation and migration of SMCs via enhanced activation of the ERK1/2-CyclinD1 signaling pathway.


LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Carotid Arteries/metabolism , Carotid Arteries/pathology , Cell Movement/genetics , Cell Proliferation , Cyclin D1/metabolism , Male , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Signal Transduction
...