Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Prostate ; 78(13): 1013-1023, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30133757

RESUMEN

BACKGROUND: Prostate cancer is recognized as a heterogeneous disease demanding appropriate preclinical models that reflect tumor complexity. Previously, we established the PSA-Cre;PtenLoxP/LoxP genetic engineered mouse model (GEMM) for prostate cancer reflecting the various stages of tumor development. Prostate tumors in this Pten KO model slowly develop, requiring more than 10 months. In order to enhance its practical utility, we established a syngeneic panel of cell lines derived from PSA-Cre targeted Pten KO tumors, designated the mouse prostate cancer (MuCap) model. METHODS: Four different MuCaP epithelial cell lines were established from three independent primary Pten KO mouse prostate tumors. Tumorigenic capacity of the MuCaP cell lines was determined by subcutaneous inoculation of these cell lines in immunocompetent mice. Response to PI3K-targeted therapy was validated in ex vivo tissue slices of the established MuCaP tumors. RESULTS: The MuCaP cell lines were all tumorigenic in immunocompetent mice after subcutaneous inoculation. Interestingly, these syngrafted tumors represented different tumor growth rates and morphologies. Treatment with the specific PI3K inhibitor GDC0941 resulted in responses very similar between syngeneic MuCaP and primary Pten KO prostate tumors. Finally, immunoprofiling of the different syngeneic MuCaP tumors demonstrated differential numbers of tumor infiltrating lymphocytes and distinct immune gene profiles with expression of CD8, INFy, and PD1 being inversely related to tumor aggressiveness. CONCLUSIONS: Collectively, we present here a well-defined MuCaP platform of in vitro and in vivo mouse prostate cancer models that may support preclinical assessment of (immune)-therapies for prostate cancer.


Asunto(s)
Invasividad Neoplásica/patología , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/patología , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Masculino , Ratones , Ratones Noqueados , Invasividad Neoplásica/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo
2.
Sci Data ; 4: 170170, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29160867

RESUMEN

Two-dimensional (2D) culture of cancer cells in vitro does not recapitulate the three-dimensional (3D) architecture, heterogeneity and complexity of human tumors. More representative models are required that better reflect key aspects of tumor biology. These are essential studies of cancer biology and immunology as well as for target validation and drug discovery. The Innovative Medicines Initiative (IMI) consortium PREDECT (www.predect.eu) characterized in vitro models of three solid tumor types with the goal to capture elements of tumor complexity and heterogeneity. 2D culture and 3D mono- and stromal co-cultures of increasing complexity, and precision-cut tumor slice models were established. Robust protocols for the generation of these platforms are described. Tissue microarrays were prepared from all the models, permitting immunohistochemical analysis of individual cells, capturing heterogeneity. 3D cultures were also characterized using image analysis. Detailed step-by-step protocols, exemplary datasets from the 2D, 3D, and slice models, and refined analytical methods were established and are presented.


Asunto(s)
Modelos Biológicos , Neoplasias , Técnicas de Cultivo de Célula , Humanos , Imagenología Tridimensional
3.
Sci Rep ; 5: 17187, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26647838

RESUMEN

Precision-cut slices of in vivo tumours permit interrogation in vitro of heterogeneous cells from solid tumours together with their native microenvironment. They offer a low throughput but high content in vitro experimental platform. Using mouse models as surrogates for three common human solid tumours, we describe a standardised workflow for systematic comparison of tumour slice cultivation methods and a tissue microarray-based method to archive them. Cultivated slices were compared to their in vivo source tissue using immunohistochemical and transcriptional biomarkers, particularly of cellular stress. Mechanical slicing induced minimal stress. Cultivation of tumour slices required organotypic support materials and atmospheric oxygen for maintenance of integrity and was associated with significant temporal and loco-regional changes in protein expression, for example HIF-1α. We recommend adherence to the robust workflow described, with recognition of temporal-spatial changes in protein expression before interrogation of tumour slices by pharmacological or other means.


Asunto(s)
Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Animales , Biomarcadores , Línea Celular Tumoral , Expresión Génica , Xenoinjertos , Humanos , Inmunohistoquímica/métodos , Ratones , Oxígeno/metabolismo , Análisis de Componente Principal , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Estrés Fisiológico , Análisis de Matrices Tisulares , Técnicas de Cultivo de Tejidos
4.
BMC Genomics ; 10: 514, 2009 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-19895685

RESUMEN

BACKGROUND: There are thousands of very diverse ciliate species from which only a handful mitochondrial genomes have been studied so far. These genomes are rather similar because the ciliates analysed (Tetrahymena spp. and Paramecium aurelia) are closely related. Here we study the mitochondrial genomes of the hypotrichous ciliates Euplotes minuta and Euplotes crassus. These ciliates are only distantly related to Tetrahymena spp. and Paramecium aurelia, but more closely related to Nyctotherus ovalis, which possesses a hydrogenosomal (mitochondrial) genome. RESULTS: The linear mitochondrial genomes of the hypotrichous ciliates Euplotes minuta and Euplotes crassus were sequenced and compared with the mitochondrial genomes of several Tetrahymena species, Paramecium aurelia and the partially sequenced mitochondrial genome of the anaerobic ciliate Nyctotherus ovalis. This study reports new features such as long 5'gene extensions of several mitochondrial genes, extremely long cox1 and cox2 open reading frames and a large repeat in the middle of the linear mitochondrial genome. The repeat separates the open reading frames into two blocks, each having a single direction of transcription, from the repeat towards the ends of the chromosome. Although the Euplotes mitochondrial gene content is almost identical to that of Paramecium and Tetrahymena, the order of the genes is completely different. In contrast, the 33273 bp (excluding the repeat region) piece of the mitochondrial genome that has been sequenced in both Euplotes species exhibits no difference in gene order. Unexpectedly, many of the mitochondrial genes of E. minuta encoding ribosomal proteins possess N-terminal extensions that are similar to mitochondrial targeting signals. CONCLUSION: The mitochondrial genomes of the hypotrichous ciliates Euplotes minuta and Euplotes crassus are rather different from the previously studied genomes. Many genes are extended in size compared to mitochondrial genes from other sources.


Asunto(s)
Euplotes/genética , Genoma Mitocondrial/genética , Transporte de Electrón , Complejo IV de Transporte de Electrones/genética , Euplotes/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , ARN de Transferencia/genética , Secuencias Repetitivas de Ácidos Nucleicos , Proteínas Ribosómicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA