Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomedicine (Lond) ; 9(4): 393-406, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24910872

RESUMEN

AIM: Atomic force microscopy nanoindentation of myofibers was used to assess and quantitatively diagnose muscular dystrophies from human patients. MATERIALS & METHODS: Myofibers were probed from fresh or frozen muscle biopsies from human dystrophic patients and healthy volunteers, as well as mice models, and Young's modulus stiffness values were determined. RESULTS: Fibers displaying abnormally low mechanical stability were detected in biopsies from patients affected by 11 distinct muscle diseases, and Young's modulus values were commensurate to the severity of the disease. Abnormal myofiber resistance was also observed from consulting patients whose muscle condition could not be detected or unambiguously diagnosed otherwise. DISCUSSION & CONCLUSION: This study provides a proof-of-concept that atomic force microscopy yields a quantitative read-out of human muscle function from clinical biopsies, and that it may thereby complement current muscular dystrophy diagnosis.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Músculo Esquelético/patología , Distrofias Musculares/patología , Adolescente , Adulto , Anciano , Animales , Fenómenos Biomecánicos , Niño , Módulo de Elasticidad , Femenino , Humanos , Masculino , Ratones
2.
BMC Mol Biol ; 14: 26, 2013 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-24295286

RESUMEN

BACKGROUND: The in vivo transfer of naked plasmid DNA into organs such as muscles is commonly used to assess the expression of prophylactic or therapeutic genes in animal disease models. RESULTS: In this study, we devised vectors allowing a tight regulation of transgene expression in mice from such non-viral vectors using a doxycycline-controlled network of activator and repressor proteins. Using these vectors, we demonstrate proper physiological response as consequence of the induced expression of two therapeutically relevant proteins, namely erythropoietin and utrophin. Kinetic studies showed that the induction of transgene expression was only transient, unless epigenetic regulatory elements termed Matrix Attachment Regions, or MAR, were inserted upstream of the regulated promoters. Using episomal plasmid rescue and quantitative PCR assays, we observed that similar amounts of plasmids remained in muscles after electrotransfer with or without MAR elements, but that a significant portion had integrated into the muscle fiber chromosomes. Interestingly, the MAR elements were found to promote plasmid genomic integration but to oppose silencing effects in vivo, thereby mediating long-term expression. CONCLUSIONS: This study thus elucidates some of the determinants of transient or sustained expression from the use of non-viral regulated vectors in vivo.


Asunto(s)
Regulación de la Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos , Regiones de Fijación a la Matriz , Plásmidos/genética , Transgenes , Animales , Doxiciclina/farmacología , Epigénesis Genética , Eritropoyetina/genética , Eritropoyetina/metabolismo , Femenino , Humanos , Cinética , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Músculos/metabolismo , Utrofina/genética , Utrofina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA