Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small Methods ; 8(7): e2301171, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38229526

RESUMEN

Collagen type I, the main component of the extracellular matrix in vertebrates, is widely used in tissue engineering applications. This is on account that collagen molecules can self-assemble under certain conditions into 3D fibrillar hydrogels. Although there is an extensive body of literature studying collagen self-assembly, there is a lack of systematic understanding on how different experimental factors, such as pH and temperature, and their cumulative effects guide the self-assembly process. In this work, a comprehensive workflow to study the interactive effects of several assembly parameters on the collagen self-assembly process is implemented. This workflow consists of: 1) efficient statistical sampling based on Design of Experiments, 2) high-throughput and automated data collection and 3) automated data analysis. This approach enables to screen several parameters simultaneously and derive a set of mathematical equations that link parameters with the kinetics and morphological aspects of collagen self-assembly, and can be used to design collagen constructs with predefined characteristics.


Asunto(s)
Colágeno Tipo I , Colágeno Tipo I/química , Cinética , Animales , Hidrogeles/química , Temperatura , Concentración de Iones de Hidrógeno , Ingeniería de Tejidos/métodos , Matriz Extracelular/química
2.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37891015

RESUMEN

Consolidated bioprocessing (CBP) of starch requires recombinant Saccharomyces cerevisiae strains that produce raw starch-degrading enzymes and ferment the resultant sugars to ethanol in a single step. In this study, the native S. cerevisiae COX4 and RPS25A promoter-proximal introns were evaluated for enhanced expression of amylase genes (ateA, temA or temG_Opt) under the control of an S. cerevisiae promoter (ENO1P, TEF1P, TDH3P, or HXT7P). The results showed that different promoters and promoter-intron combinations differentially affected recombinant amylase production: ENO1P-COX4i and TDH3P-RPS25Ai were the best promoters for AteA, followed closely by HXT7P. The latter was also the best promoter for TemA and TemG production, followed closely by TDH3P-RPS25Ai for both these enzymes. Introducing promoter-proximal introns increased amylase activity up to 62% in Y294[ENO-COX-AteA] and Y294[TDH3-RPS-TemA], a significant improvement relative to the intron-less promoters. Strains co-expressing both an α-amylase and glucoamylase genes yielded up to 56 g/L ethanol from 20% w/v raw starch, with a higher carbon conversion observed with strains co-expressing TDH3P-RPS25Ai-temG_Opt than HXT7P-temG_Opt. The study showed that promoter-proximal introns can enhance amylase activity in S. cerevisiae and suggest that these alternative cassettes may also be considered for expression in more efficient ethanol-producing industrial yeast strains for raw starch CBP.


Asunto(s)
Amilasas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Amilasas/genética , Amilasas/metabolismo , Intrones , Almidón/metabolismo , Etanol/metabolismo , Fermentación
3.
Bioresour Technol ; 390: 129908, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37866766

RESUMEN

Single-use bioplastic items pose new challenges for a circular plastics economy as they require different processing than petroleum-based plastics items. Microbial and enzymatic recycling approaches could address some of the pitfalls created by the influx of bioplastic waste. In this study, the recombinant expression of a cutinase-like-enzyme (CLE1) was improved in the yeast Saccharomyces cerevisiae to efficiently hydrolyse several commercial single-use bioplastic items constituting blends of poly(lactic acid), poly(1,4-butylene adipate-co-terephthalate), poly(butylene succinate) and mineral fillers. The hydrolysis process was optimised in controlled bioreactor configurations to deliver substantial monomer concentrations and, ultimately, 29 to 78% weight loss. Product inhibition studies and molecular docking provided insights into potential bottlenecks of the enzymatic hydrolysis process, while FT-IR analysis showed the preferential breakdown of specific polymers in blended commercial bioplastic items. This work constitutes a step towards implementing enzymatic hydrolysis as a circular economy approach for the valorisation of end-of-life single-use bioplastic items.


Asunto(s)
Plásticos , Saccharomyces cerevisiae , Hidrólisis , Espectroscopía Infrarroja por Transformada de Fourier , Simulación del Acoplamiento Molecular , Biopolímeros
4.
Bioresour Technol ; 388: 129787, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37741578

RESUMEN

The implementation of consolidated bioprocessing for converting starch to ethanol relies on a robust yeast that produces enough amylases for rapid starch hydrolysis. Furthermore, using low-cost substrates will assist with competitive ethanol prices and support a bioeconomy, especially in developing countries. This paper addresses both challenges with the expression of additional glucoamylase gene copies in an efficient amylolytic strain (Saccharomyces cerevisiae ER T12) derived from the industrial yeast, Ethanol Red™. Recombinant ER T12 was used as a host to increase ethanol productivity during raw starch fermentation; the ER T12.7 variant, selected from various transformants, displayed enhanced raw starch conversion and a 36% higher ethanol concentration than the parental strain after 120 h. Unripe rice, rice bran, potato waste and potato peels were evaluated as alternative starchy substrates to test ER T12.7's fermenting ability. ER T12.7 produced high ethanol yields at significantly improved ethanol productivity, key criteria for its industrial application.

5.
Adv Appl Microbiol ; 124: 1-29, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37597945

RESUMEN

The transcription of genes in the yeast Saccharomyces cerevisiae is governed by multiple layers of regulatory elements and proteins, cooperating to ensure optimum expression of the final protein product based on the cellular requirements. Promoters have always been regarded as the most important determinant of gene transcription, but introns also play a key role in the expression of intron-encoding genes. Some introns can enhance transcription when introduced either promoter-proximal or embedded in the open reading frame of genes. However, the outcome is seldom predictable, with some introns increasing or decreasing transcription depending on the promoter and reporter gene employed. This chapter provides an overview of the general structure and function of promoters and introns and how they may cooperate during transcription to allow intron-mediated enhancement of gene expression. Since S. cerevisiae is a suitable host for recombinant protein production on a commercial level, stronger and more controllable promoters are in high demand. Enhanced gene expression can be achieved via promoter engineering, which may include introns that increase the efficacy of recombinant expression cassettes. Different models for the role of introns in transcription are briefly discussed to show how these intervening sequences can actively interact with the transcription machinery. Furthermore, recent examples of improved protein production via the introduction of promoter-proximal introns are highlighted to showcase the potential value of intron-mediated enhancement of gene expression.


Asunto(s)
Saccharomyces cerevisiae , Intrones , Saccharomyces cerevisiae/genética , Regiones Promotoras Genéticas , Genes Reporteros , Expresión Génica
6.
Artículo en Inglés | MEDLINE | ID: mdl-37171691

RESUMEN

Antimicrobial peptides or bacteriocins are excellent candidates for alternative antimicrobials, but high manufacturing costs limit their applications. Recombinant gene expression offers the potential to produce these peptides more cost-effectively at a larger scale. Saccharomyces cerevisiae is a popular host for recombinant protein production, but with limited success reported on antimicrobial peptides. Individual recombinant S. cerevisiae strains were constructed to secrete two class IIa bacteriocins, plantaricin 423 (PlaX) and mundticin ST4SA (MunX). The native and codon-optimised variants of the plaA and munST4SA genes were cloned into episomal expression vectors containing either the S. cerevisiae alpha mating factor (MFα1) or the Trichoderma reesei xylanase 2 (XYNSEC) secretion signal sequences. The recombinant peptides retained their activity and stability, with the MFα1 secretion signal superior to the XYNSEC secretion signal for both bacteriocins. An eight-fold increase in activity against Listeria monocytogenes was observed for MunX after codon optimisation, but not for PlaX-producing strains. After HPLC-purification, the codon-optimised genes yielded 20.9 mg/L of MunX and 18.4 mg/L of PlaX, which displayed minimum inhibitory concentrations (MICs) of 108.52 nM and 1.18 µM, respectively, against L. monocytogenes. The yields represent a marked improvement relative to an Escherichia coli expression system previously reported for PlaX and MunX. The results demonstrated that S. cerevisiae is a promising host for recombinant bacteriocin production that requires a simple purification process, but the efficacy is sensitive to codon usage and secretion signals.

7.
Bioresour Technol ; 378: 129008, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37011843

RESUMEN

Polylactic acid (PLA) is a major contributor to the global bioplastic production capacity. However, post-consumer PLA waste is not fully degraded during non-optimal traditional organic waste treatment processes and can persist in nature for many years. Efficient enzymatic hydrolysis of PLA would contribute to cleaner, more energy-efficient, environmentally friendly waste management processes. However, high costs and a lack of effective enzyme producers curtail the large-scale application of such enzymatic systems. This study reports the recombinant expression of a fungal cutinase-like enzyme (CLE1) in the yeast Saccharomyces cerevisiae, which produced a crude supernatant that efficiently hydrolyses different types of PLA materials. The codon-optimised Y294[CLEns] strain delivered the best enzyme production and hydrolysis capabilities, releasing up to 9.44 g/L lactic acid from 10 g/L PLA films with more than 40% loss in film weight. This work highlights the potential of fungal hosts producing PLA hydrolases for future commercial applications in PLA recycling.


Asunto(s)
Poliésteres , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Hidrólisis
8.
FEMS Microbiol Lett ; 3702023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36646426

RESUMEN

Saccharomyces cerevisiae with its robustness and good acid tolerance, is an attractive candidate for use in various industries, including waste-based biorefineries where a high-value organic acid is produced, such as fumaric acid could be beneficial. However, this yeast is not a natural producer of dicarboxylic acids, and genetic engineering of S. cerevisiae strains is required to achieve this outcome. Disruption of the natural FUM1 gene and the recombinant expression of fumarase and malate transporter genes improved the malic acid-to-fumaric acid conversion by engineered S. cerevisiae strains. The efficacy of the strains was significantly influenced by the source of the fumarase gene (yeast versus bacterial), the presence of the XYNSEC signal secretion signal and the available oxygen in synthetic media cultivations. The ΔFUM1Ckr_fum + mae1 and ΔFUM1(ss)Ckr_fum + mae1 strains converted extracellular malic acid into 0.98 and 1.11 g/L fumaric acid under aerobic conditions.


Asunto(s)
Fumarato Hidratasa , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Malatos/metabolismo
9.
Biotechnol Lett ; 45(1): 105-113, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36400875

RESUMEN

OBJECTIVES: Different cultivation conditions and parameters were evaluated to improve the production and secretion of a recombinant Phanerochaete chrysosporium lipH8 gene in Komagataella phaffii (Pichia pastoris). RESULTS: The recombinant lipH8 gene with its native secretion signal was successfully cloned and expressed in Komagataella phaffii (Pichia pastoris) under the control of the alcohol oxidase 1 promoter (PAOX1). The results revealed that co-feeding with sorbitol and methanol increased rLiP secretion by 5.9-fold compared to the control conditions. The addition of 1 mM FeSO4 increased LiP activity a further 6.0-fold during the induction phase. Moreover, the combination of several optimal conditions and parameters yielded an extracellular rLiP activity of 20.05 U l-1, which is more than ten-fold higher relative to standard growth conditions (BMM10 medium, pH 6 and 30 °C). CONCLUSION: Extracellular activity of a recombinant LiP expressed in P. pastoris increased more than ten-fold when co-feeding sorbitol and methanol as carbon sources, together with urea as nitrogen source, FeSO4 supplementation, lower pH and lower cultivation temperature.


Asunto(s)
Medios de Cultivo , Proteínas Fúngicas , Peroxidasas , Phanerochaete , Pichia , Proteínas Recombinantes , Metanol/metabolismo , Pichia/crecimiento & desarrollo , Pichia/metabolismo , Sorbitol/metabolismo , Peroxidasas/biosíntesis , Peroxidasas/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Phanerochaete/enzimología , Phanerochaete/genética , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Medios de Cultivo/química
10.
Enzyme Microb Technol ; 164: 110171, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36549094

RESUMEN

The increased demand for energy has sparked a global search for renewable energy sources that could partly replace fossil fuel resources and help mitigate climate change. Cellulosic biomass is an ideal feedstock for renewable bioethanol production, but the process is not currently economically feasible due to the high cost of pretreatment and enzyme cocktails to release fermentable sugars. Lytic polysaccharide monooxygenases (LPMOs) and cellobiose dehydrogenases (CDHs) are auxiliary enzymes that can enhance cellulose hydrolysis. In this study, four LPMO and two CDH genes were subcloned and expressed in the Saccharomyces cerevisiae Y294 laboratory strain. SDS-PAGE analysis confirmed the extracellular production of the LPMOs and CDHs in the laboratory S. cerevisiae Y294 strain. A rudimentary cellulase cocktail (cellobiohydrolase 1 and 2, endoglucanase and ß-glucosidase) was expressed in the commercial CelluX™ 4 strain and extracellular production of the individual cellulases was confirmed by SDS-PAGE analysis. In vitro cooperation of the CDHs and LPMOs with the rudimentary cellulases produced by strain CelluX™ 4[F4-1] was demonstrated on Whatman filter paper. The significant levels of soluble sugars released from this crystalline cellulose substrate indicated that these auxiliary enzymes could be important components of the CBP yeast cellulolytic system.


Asunto(s)
Celulasas , Celulosa , Suplementos Dietéticos , Proteínas Recombinantes , Celulasas/química , Celulasas/metabolismo , Celulosa/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
11.
Bioresour Technol ; 365: 128132, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36252752

RESUMEN

Sustainable bioproduction usingcarbon neutral feedstocks, especially lignocellulosic biomass, has attracted increasing attention due to concern over climate change and carbon reduction. Consolidated bioprocessing (CBP) of lignocellulosic biomass using recombinantyeast of Saccharomyces cerevisiaeis a promising strategy forlignocellulosic biorefinery. However, the economic viability is restricted by low enzyme secretion levels.For more efficient CBP, MIG1spsc01isolated from the industrial yeast which encodes the glucose repression regulator derivative was overexpressed. Increased extracellular cellobiohydrolase (CBH) activity was observed with unexpectedly decreased cell wall integrity. Further studies revealed that disruption ofCWP2, YGP1, andUTH1,which are functionally related toMIG1spsc01, also enhanced CBH secretion. Subsequently, improved cellulase production was achieved by simultaneous disruption ofYGP1and overexpression ofSED5, which remarkably increased extracellular CBH activity of 2.2-fold over the control strain. These results provide a novel strategy to improve the CBP yeast for bioconversion of carbon neutral biomass.


Asunto(s)
Celulasa , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Biomasa , Carbono/metabolismo , Celulasa/metabolismo , Celulosa 1,4-beta-Celobiosidasa/genética , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Pared Celular/metabolismo , Fermentación
12.
Appl Microbiol Biotechnol ; 106(18): 6347-6361, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35951080

RESUMEN

Consolidated bioprocessing (CBP) remains an attractive option for the production of commodity products from pretreated lignocellulose if a process-suitable organism can be engineered. The yeast Saccharomyces cerevisiae requires engineered cellulolytic activity to enable its use in CBP production of second-generation (2G) bioethanol. A promising strategy for heterologous cellulase production in yeast entails displaying enzymes on the cell surface by means of glycosylphosphatidylinositol (GPI) anchors. While strains producing a core set of cell-adhered cellulases that enabled crystalline cellulose hydrolysis have been created, secreted levels of enzyme were insufficient for complete cellulose hydrolysis. In fact, all reported recombinant yeast CBP candidates must overcome the drawback of generally low secretion titers. Rational strain engineering can be applied to enhance the secretion phenotype. This study aimed to improve the amount of cell-adhered cellulase activities of recombinant S. cerevisiae strains expressing a core set of four cellulases, through overexpression of genes that were previously shown to enhance cellulase secretion. Results showed significant increases in cellulolytic activity for all cell-adhered cellulase enzyme types. Cell-adhered cellobiohydrolase activity was improved by up to 101%, ß-glucosidase activity by up to 99%, and endoglucanase activity by up to 231%. Improved hydrolysis of crystalline cellulose of up to 186% and improved ethanol yields from this substrate of 40-50% in different strain backgrounds were also observed. In addition, improvement in resistance to fermentation stressors was noted in some strains. These strains represent a step towards more efficient organisms for use in 2G biofuel production. KEY POINTS: • Cell-surface-adhered cellulase activity was improved in strains engineered for CBP. • Levels of improvement of activity were strain and enzyme dependent. • Crystalline cellulose conversion to ethanol could be improved up to 50%.


Asunto(s)
Celulasa , Celulasas , Celulasa/genética , Celulasa/metabolismo , Celulasas/metabolismo , Celulosa/metabolismo , Etanol/metabolismo , Fermentación , Saccharomyces cerevisiae/metabolismo
13.
Appl Microbiol Biotechnol ; 106(1): 455-468, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34870737

RESUMEN

The fermentation of spent sulphite liquor (SSL) from the pulping of hardwoods is limited by the combination of xylose, the primary fermentable sugar and high concentrations of microbial inhibitors that decrease the yeast fermentation ability. The inhibitor resistance phenotypes of xylose-capable Saccharomyces cerevisiae strains were therefore enhanced by combining rational engineering for multi-inhibitor tolerance, with adaptation in concentrated hardwood SSL as selective pressure. The adapted strains were assessed in fermentations with 60-80% v/v concentrated SSL under industrially relevant fermentation conditions. During adaptation, strains produced ethanol concentrations between 11.0 and 15.4 g/L in the range of that reported in literature. The adapted TFA40 and TP50 strains displayed enhanced inhibitor resistance phenotypes and were able to ferment xylose-rich SSL at pH below 5, exhibiting improved ethanol yields relative to the reference strain. Using yeast extract and peptone as nitrogen source in concentrated SSL fermentations further improved ethanol yields. However, strains exhibited a trade-off between resistance and ethanol productivity, indicating a carbon/energy cost for the expression of this inhibitor tolerance phenotype. KEY POINTS : • Achieved fermentation of xylose-rich hardwood spent sulphite liquor at pH below 5.0 • Adaptation of xylose-capable S. cerevisiae in concentrated spent sulphite liquor • Adapted strains exhibited enhanced inhibitor resistance phenotypes.


Asunto(s)
Saccharomyces cerevisiae , Xilosa , Etanol , Fermentación , Sulfitos
14.
Biotechnol Adv ; 53: 107859, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34678441

RESUMEN

Selected strains of Saccharomyces cerevisiae are used for commercial bioethanol production from cellulose and starch, but the high cost of exogenous enzymes for substrate hydrolysis remains a challenge. This can be addressed through consolidated bioprocessing (CBP) where S. cerevisiae strains are engineered to express recombinant glycoside hydrolases during fermentation. Looking back at numerous strategies undertaken over the past four decades to improve recombinant protein production in S. cerevisiae, it is evident that various steps in the protein production "pipeline" can be manipulated depending on the protein of interest and its anticipated application. In this review, we briefly introduce some of the strategies and highlight lessons learned with regards to improved transcription, translation, post-translational modification and protein secretion of heterologous hydrolases. We examine how host strain selection and modification, as well as enzyme compatibility, are crucial determinants for overall success. Finally, we discuss how lessons from heterologous hydrolase expression can inform modern synthetic biology and genome editing tools to provide process-ready yeast strains in future. However, it is clear that the successful expression of any particular enzyme is still unpredictable and requires a trial-and-error approach.


Asunto(s)
Saccharomyces cerevisiae , Almidón , Celulosa , Etanol , Fermentación , Hidrolasas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Almidón/metabolismo
15.
Enzyme Microb Technol ; 150: 109893, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34489046

RESUMEN

In this study, a GH26 endo-mannanase (Man26A) from an Aspergillus niger ATCC 10864 strain, with a molecular mass of 47.8 kDa, was cloned in a yBBH1 vector and expressed in Saccharomyces cerevisiae Y294 strain cells. Upon fractionation by ultra-filtration, the substrate specificity and substrate degradation pattern of the endo-mannanase (Man26A) were investigated using ivory nut linear mannan and two galactomannan substrates with varying amounts of galactosyl substitutions, guar gum and locust bean gum. Man26A exhibited substrate specificity in the order: locust bean gum ≥ ivory nut mannan > guar gum; however, the enzyme generated more manno-oligosaccharides (MOS) from the galactomannans than from linear mannan during extended periods of mannan hydrolysis. MOS with a DP of 2-4 were the major products from mannan substrate hydrolysis, while guar gum also generated higher DP length MOS. All the Man26A generated MOS significantly improved the growth (approximately 3-fold) of the probiotic bacterial strains Streptococcus thermophilus and Bacillus subtilis in M9 minimal medium. Ivory nut mannan and locust bean gum derived MOS did not influence the auto-aggregation ability of the bacteria, while the guar gum derived MOS led to a 50 % reduction in bacterial auto-aggregation. On the other hand, all the MOS significantly improved bacterial biofilm formation (approximately 3-fold). This study suggests that the prebiotic characteristics exhibited by MOS may be dependent on their primary structure, i.e. galactose substitution and DP. Furthermore, the data suggests that the enzyme-generated MOS may be useful as potent additives to dietary foods.


Asunto(s)
Aspergillus niger , Prebióticos , Aspergillus niger/genética , Hidrólisis , Mananos , Oligosacáridos , beta-Manosidasa/genética
16.
Biotechnol Biofuels ; 14(1): 173, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34454598

RESUMEN

BACKGROUND: The fermentation of lignocellulose hydrolysates to ethanol requires robust xylose-capable Saccharomyces cerevisiae strains able to operate in the presence of microbial inhibitory stresses. This study aimed at developing industrial S. cerevisiae strains with enhanced tolerance towards pretreatment-derived microbial inhibitors, by identifying novel gene combinations that confer resistance to multiple inhibitors (thus cumulative inhibitor resistance phenotype) with minimum impact on the xylose fermentation ability. The strategy consisted of multiple sequential delta-integrations of double-gene cassettes containing one gene conferring broad inhibitor tolerance (ARI1, PAD1 or TAL1) coupled with an inhibitor-specific gene (ADH6, FDH1 or ICT1). The performances of the transformants were compared with the parental strain in terms of biomass growth, ethanol yields and productivity, as well as detoxification capacities in a synthetic inhibitor cocktail, sugarcane bagasse hydrolysate as well as hardwood spent sulphite liquor. RESULTS: The first and second round of delta-integrated transformants exhibited a trade-off between biomass and ethanol yield. Transformants showed increased inhibitor resistance phenotypes relative to parental controls specifically in fermentations with concentrated spent sulphite liquors at 40% and 80% v/v concentrations in 2% SC media. Unexpectedly, the xylose fermentation capacity of the transformants was reduced compared to the parental control, but certain combinations of genes had a minor impact (e.g. TAL1 + FDH1). The TAL1 + ICT1 combination negatively impacted on both biomass growth and ethanol yield, which could be linked to the ICT1 protein increasing transformant susceptibility to weak acids and temperature due to cell membrane changes. CONCLUSIONS: The integration of the selected genes was proven to increase tolerance to pretreatment inhibitors in synthetic or industrial hydrolysates, but they were limited to the fermentation of glucose. However, some gene combination sequences had a reduced impact on xylose conversion.

17.
Appl Microbiol Biotechnol ; 105(14-15): 5895-5904, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34272577

RESUMEN

The expression of functional proteins on the cell surface using glycosylphosphatidylinositol (GPI)-anchoring technology is a promising approach for constructing yeast cells with special functions. The functionality of surface-engineered yeast strains strongly depends on the amount of functional proteins displayed on their cell surface. On the other hand, since the yeast cell wall space is finite, heterologous protein carrying capacity of the cell wall is limited. Here, we report the effect of CCW12 and CCW14 knockout, which encode major nonenzymatic GPI-anchored cell wall proteins (GPI-CWPs) involved in the cell wall organization, on the heterologous protein carrying capacity of yeast cell wall. Aspergillus aculeatus ß-glucosidase (BGL) was used as a reporter to evaluate the protein carrying capacity in Saccharomyces cerevisiae. No significant difference in the amount of cell wall-associated BGL and cell-surface BGL activity was observed between CCW12 and CCW14 knockout strains and their control strain. In contrast, in the CCW12 and CCW14 co-knockout strains, the amount of cell wall-associated BGL and its activity were approximately 1.4-fold higher than those of the control strain and CCW12 or CCW14 knockout strains. Electron microscopic observation revealed that the total cell wall thickness of the CCW12 and CCW14 co-knockout strains was increased compared to the parental strain, suggesting a potential increase in heterologous protein carrying capacity of the cell wall. These results indicate that the CCW12 and CCW14 co-knockout strains are a promising host for the construction of highly functional recombinant yeast strains using cell-surface display technology. KEY POINTS: • CCW12 and/or CCW14 of a BGL-displaying S. cerevisiae strain were knocked out. • CCW12 and CCW14 co-disruption improved the display efficiency of BGL. • The thickness of the yeast cell wall was increased upon CCW12 and CCW14 knockout.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aspergillus , Pared Celular , Glicosilfosfatidilinositoles , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
Folia Microbiol (Praha) ; 66(3): 341-354, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33474701

RESUMEN

It is estimated that more than 20% of processed apples and grapes are discarded as waste, which is dominated by pomace rich in malic acid that could be converted to high-value organic acids or other chemicals. A total of 98 yeast strains isolated from apple, grape, and plum wastes were evaluated for their ability to degrade malic acid relative to known yeast strains. Most (94%) of the new isolates degraded malic acid efficiently (> 50%) in the presence and absence of exogenous glucose, whereas only 14% of the known strains could do so, thus confirming the value of exploring (and exploiting) natural biodiversity. The best candidates were evaluated in synthetic media for their ability to convert malic acid to other valuable products under aerobic and oxygen-limited conditions, with two strains that produced ethanol and acetic acid as potential biorefinery products during aerobic cultivations and oxygen-limited fermentations on sterilized apple and grape pomace. Noteworthy was the identification of a Saccharomyces cerevisiae strain that is more efficient in degrading malic acid than other members of the species. This natural strain could be of value in the wine-making industry that often requires pH corrections due to excess malic acid.


Asunto(s)
Residuos Industriales , Malatos , Malus , Vitis , Levaduras , Fermentación , Malatos/metabolismo , Malus/microbiología , Saccharomyces cerevisiae/metabolismo , Vitis/microbiología , Vino/microbiología
19.
Front Microbiol ; 12: 768562, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126325

RESUMEN

Natural yeast with superior fermentative traits can serve as a platform for the development of recombinant strains that can be used to improve the sustainability of bioethanol production from starch. This process will benefit from a consolidated bioprocessing (CBP) approach where an engineered strain producing amylases directly converts starch into ethanol. The yeast Saccharomyces cerevisiae L20, previously selected as outperforming the benchmark yeast Ethanol Red, was here subjected to a comparative genomic investigation using a dataset of industrial S. cerevisiae strains. Along with Ethanol Red, strain L20 was then engineered for the expression of α-amylase amyA and glucoamylase glaA genes from Aspergillus tubingensis by employing two different approaches (delta integration and CRISPR/Cas9). A correlation between the number of integrated copies and the hydrolytic abilities of the recombinants was investigated. L20 demonstrated important traits for the construction of a proficient CBP yeast. Despite showing a close relatedness to commercial wine yeast and the benchmark Ethanol Red, a unique profile of gene copy number variations (CNVs) was found in L20, mainly encoding membrane transporters and secretion pathway proteins but also the fermentative metabolism. Moreover, the genome annotation disclosed seven open reading frames (ORFs) in L20 that are absent in the reference S288C genome. Genome engineering was successfully implemented for amylase production. However, with equal amylase gene copies, L20 proved its proficiency as a good enzyme secretor by exhibiting a markedly higher amylolytic activity than Ethanol Red, in compliance to the findings of the genomic exploration. The recombinant L20 dT8 exhibited the highest amylolytic activity and produced more than 4 g/L of ethanol from 2% starch in a CBP setting without the addition of supplementary enzymes. Based on the performance of this strain, an amylase/glucoamylase ratio of 1:2.5 was suggested as baseline for further improvement of the CBP ability. Overall, L20 showed important traits for the future construction of a proficient CBP yeast. As such, this work shows that natural S. cerevisiae strains can be used for the expression of foreign secreted enzymes, paving the way to strain improvement for the starch-to-bioethanol route.

20.
Bioresour Technol ; 321: 124518, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33316699

RESUMEN

Rumen fluid (RF) as inocula is useful for evaluating biomass digestibility and has potential for producing volatile fatty acids (VFA) via the carboxylate platform. However, RF is not readily available, necessitating evaluation of potential preservation methods. Glycerol (50% v/v) and DMSO (5% v/v) were used to preserve rumen inocula for 3 months at -80 °C. Effects of cryo-preservation on digestibility, VFA production and community composition with ß-diversity distance metrics were compared to fresh RF using apple, citrus and grape pomace as substrates. For all substrates, DMSO cryo-preserved rumen digestibility parameters, VFA yield and product distribution were more significantly comparable to fresh RF (P > 0.05) than was glycerol cryo-preserved RF. Similarly, ß-diversity coefficient (unweighted unifrac) between DMSO cryo-preserved RF and fresh RF was 0.250 while the coefficient was 0.359 for the glycerol cryo-preserved RF compared to fresh RF. This showed that a DMSO cryo-preserved RF is less affected by preservation effects and is a more promising alternative to fresh RF.


Asunto(s)
Frutas , Rumen , Animales , Biomasa , Ácidos Grasos Volátiles/metabolismo , Fermentación , Rumen/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA