Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Nat Protoc ; 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38504137

Modeling immuno-oncology by using patient-derived material and immune cell co-cultures can advance our understanding of immune cell tumor targeting in a patient-specific manner, offering leads to improve cellular immunotherapy. However, fully exploiting these living cultures requires analysis of the dynamic cellular features modeled, for which protocols are currently limited. Here, we describe the application of BEHAV3D, a platform that implements multi-color live 3D imaging and computational tools for: (i) analyzing tumor death dynamics at both single-organoid or cell and population levels, (ii) classifying T cell behavior and (iii) producing data-informed 3D images and videos for visual inspection and further insight into obtained results. Together, this enables a refined assessment of how solid and liquid tumors respond to cellular immunotherapy, critically capturing both inter- and intratumoral heterogeneity in treatment response. In addition, BEHAV3D uncovers T cell behavior involved in tumor targeting, offering insight into their mode of action. Our pipeline thereby has strong implications for comparing, prioritizing and improving immunotherapy products by highlighting the behavioral differences between individual tumor donors, distinct T cell therapy concepts or subpopulations. The protocol describes critical wet lab steps, including co-culture preparations and fast 3D imaging with live cell dyes, a segmentation-based image processing tool to track individual organoids, tumor and immune cells and an analytical pipeline for behavioral profiling. This 1-week protocol, accessible to users with basic cell culture, imaging and programming expertise, can easily be adapted to any type of co-culture to visualize and exploit cell behavior, having far-reaching implications for the immuno-oncology field and beyond.

2.
Haematologica ; 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38426282

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) can hijack the normal bone marrow microenvironment to create a leukemic niche which facilitates blast cell survival and promotes drug resistance. Bone marrow-derived mesenchymal stromal cells (MSCs) mimic this protective environment in ex vivo co-cultures with leukemic cells obtained from children with newly diagnosed BCP-ALL. We examined the potential mechanisms of this protection by RNA sequencing of flowsorted MSCs after co-culture with BCP-ALL cells. Leukemic cells induced an interferon (IFN)-related gene signature in MSCs, which was partially dependent on direct cell-cell signaling. The signature was selectively induced by BCP-ALL cells, most profoundly by ETV6-RUNX1 positive ALL cells, as coculture of MSCs with healthy immune cells did not provoke a similar IFN signature. Leukemic cells and MSCs both secreted IFNα and IFNß, but no IFNγ. In line, the IFN-gene signature was sensitive to blockade of IFNα/ß signaling, but less to that of IFNγ. The viability of leukemic cells and level of resistance to three chemotherapeutic agents was not affected by interference with IFN signaling using selective IFNα/ß inhibitors or silencing of IFN-related genes. Taken together, our data suggest that the leukemia-induced expression of IFNα/ß-related genes by MSCs does not support survival of BCPALL cells but may serve a different role in the pathobiology of BCP-ALL.

3.
Blood Adv ; 8(8): 1835-1845, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38386975

ABSTRACT: A better understanding of ABL1 kinase domain mutation-independent causes of tyrosine kinase inhibitor (TKI) resistance is needed for BCR::ABL1-positive B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Although TKIs have dramatically improved outcomes, a subset of patients still experiences relapsed or refractory disease. We aimed to identify potential biomarkers of intrinsic TKI resistance at diagnosis in samples from 32 pediatric and 19 adult patients with BCR::ABL1-positive BCP-ALL. Reduced ex vivo imatinib sensitivity was observed in cells derived from newly diagnosed patients who relapsed after combined TKI and chemotherapy treatment compared with cells derived from patients who remained in continuous complete remission. We observed that ex vivo imatinib resistance was inversely correlated with the amount of (phosphorylated) BCR::ABL1/ABL1 protein present in samples that were taken at diagnosis without prior TKI exposure. This suggests an intrinsic cause of TKI resistance that is independent of functional BCR::ABL1 signaling. Simultaneous deletions of IKZF1 and CDKN2A/B and/or PAX5 (IKZF1plus), as well as deletions of PAX5 alone, were related to ex vivo imatinib resistance. In addition, somatic lesions involving ZEB2, SETD2, SH2B3, and CRLF2 were associated with reduced ex vivo imatinib sensitivity. Our data suggest that the poor prognostic value of IKZF1(plus) deletions is linked to intrinsic mechanisms of TKI resistance other than ABL1 kinase domain mutations in newly diagnosed pediatric and adult BCR::ABL1-positive BCP-ALL.


Fusion Proteins, bcr-abl , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Adult , Humans , Child , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Fusion Proteins, bcr-abl/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mutation , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
4.
Transl Oncol ; 13(10): 100817, 2020 Oct.
Article En | MEDLINE | ID: mdl-32563910

AIM: The Bruton's tyrosine kinase (BTK) inhibitor Ibrutinib (PCI-32765) is effective in patients with multiple myeloma, non-Hodgkin lymphoma and chronic lymphoblastic leukemia. We previously showed that primary cells of children with TCF3-PBX1 positive B-cell precursor acute lymphoblastic leukemia (BCP-ALL) express BTK and are sensitive to ibrutinib in vitro. However, preclinical studies in mice are lacking that justify clinical implementation. METHODS: Immunocompromised NSG mice were engrafted with a luciferase-positive TCF3-PBX1 leukemic cell line or primary leukemic cells and treated with ibrutinib or placebo. Additionally, primary cells were exposed in vitro to 4 main induction drugs as monotherapy and in combination with ibrutinib. RESULTS: Treatment with ibrutinib of mice engrafted with a TCF3-PBX1 cell line, TCF3-PBX1 positive or TCF3-PBX1 negative primary leukemic cells did not result in prolonged life span compared to placebo treated mice. In vitro sensitivity to ibrutinib was unaltered in leukemic cells obtained from engrafted mice compared to the original material. However, ibrutinib treatment did not affect leukemic cell viability and tumor outgrowth, nor could lymphocytosis be detected. Ibrutinib was biologically active, since hCD19+ cells harvested from ibrutinib treated mice had no detectable levels of phospho-BTK at tyrosine 223 (pBTK Y223), whereas pBTK Y223 was still detectable in placebo treated cases. In combination tests, we noticed an antagonistic effect of ibrutinib on vincristine sensitivity, which was not observed for prednisolone, L-asparaginase and daunorubicin. CONCLUSIONS: We conclude that ibrutinib is not the precision medicine of choice for TCF3-PBX1 positive BCP-ALL.

5.
Oncotarget ; 8(52): 89923-89938, 2017 Oct 27.
Article En | MEDLINE | ID: mdl-29163799

JAK2 abnormalities may serve as target for precision medicines in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In the current study we performed a screening for JAK2 mutations and translocations, analyzed the clinical outcome and studied the efficacy of two JAK inhibitors in primary BCP-ALL cells. Importantly, we identify a number of limitations of JAK inhibitor therapy. JAK2 mutations mainly occurred in the poor prognostic subtypes BCR-ABL1-like and non- BCR-ABL1-like B-other (negative for sentinel cytogenetic lesions). JAK2 translocations were restricted to BCR-ABL1-like cases. Momelotinib and ruxolitinib were cytotoxic in both JAK2 translocated and JAK2 mutated cells, although efficacy in JAK2 mutated cells highly depended on cytokine receptor activation by TSLP. However, our data also suggest that the effect of JAK inhibition may be compromised by mutations in alternative survival pathways and microenvironment-induced resistance. Furthermore, inhibitors induced accumulation of phosphorylated JAK2Y1007, which resulted in a profound re-activation of JAK2 signaling upon release of the inhibitors. This preclinical evidence implies that further optimization and evaluation of JAK inhibitor treatment is necessary prior to its clinical integration in pediatric BCP-ALL.

6.
Development ; 139(14): 2576-83, 2012 Jul.
Article En | MEDLINE | ID: mdl-22675207

Mouse Cdx genes are involved in axial patterning and partial Cdx mutants exhibit posterior embryonic defects. We found that mouse embryos in which all three Cdx genes are inactivated fail to generate any axial tissue beyond the cephalic and occipital primordia. Anterior axial tissues are laid down and well patterned in Cdx null embryos, and a 3' Hox gene is initially transcribed and expressed in the hindbrain normally. Axial elongation stops abruptly at the post-occipital level in the absence of Cdx, as the posterior growth zone loses its progenitor activity. Exogenous Fgf8 rescues the posterior truncation of Cdx mutants, and the spectrum of defects of Cdx null embryos matches that resulting from loss of posterior Fgfr1 signaling. Our data argue for a main function of Cdx in enforcing trunk emergence beyond the Cdx-independent cephalo-occipital region, and for a downstream role of Fgfr1 signaling in this function. Cdx requirement for the post-head section of the axis is ancestral as it takes place in arthropods as well.


Embryonic Development/physiology , Evolution, Molecular , Animals , CDX2 Transcription Factor , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Somites/cytology , Somites/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Development ; 138(16): 3451-62, 2011 Aug.
Article En | MEDLINE | ID: mdl-21752936

Decrease in Cdx dosage in an allelic series of mouse Cdx mutants leads to progressively more severe posterior vertebral defects. These defects are corrected by posterior gain of function of the Wnt effector Lef1. Precocious expression of Hox paralogous 13 genes also induces vertebral axis truncation by antagonizing Cdx function. We report here that the phenotypic similarity also applies to patterning of the caudal neural tube and uro-rectal tracts in Cdx and Wnt3a mutants, and in embryos precociously expressing Hox13 genes. Cdx2 inactivation after placentation leads to posterior defects, including incomplete uro-rectal septation. Compound mutants carrying one active Cdx2 allele in the Cdx4-null background (Cdx2/4), transgenic embryos precociously expressing Hox13 genes and a novel Wnt3a hypomorph mutant all manifest a comparable phenotype with similar uro-rectal defects. Phenotype and transcriptome analysis in early Cdx mutants, genetic rescue experiments and gene expression studies lead us to propose that Cdx transcription factors act via Wnt signaling during the laying down of uro-rectal mesoderm, and that they are operative in an early phase of these events, at the site of tissue progenitors in the posterior growth zone of the embryo. Cdx and Wnt mutations and premature Hox13 expression also cause similar neural dysmorphology, including ectopic neural structures that sometimes lead to neural tube splitting at caudal axial levels. These findings involve the Cdx genes, canonical Wnt signaling and the temporal control of posterior Hox gene expression in posterior morphogenesis in the different embryonic germ layers. They shed a new light on the etiology of the caudal dysplasia or caudal regression range of human congenital defects.


Embryo, Mammalian/metabolism , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Neural Tube/metabolism , Signal Transduction , Transcription Factors/metabolism , Wnt Proteins/metabolism , Animals , CDX2 Transcription Factor , Cell Shape , Female , Hedgehog Proteins/metabolism , Homeodomain Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neural Tube/cytology , Transcription Factors/genetics , Tretinoin/metabolism , Wnt Proteins/genetics , Wnt3 Protein , Wnt3A Protein
8.
Dev Cell ; 17(4): 516-26, 2009 Oct.
Article En | MEDLINE | ID: mdl-19853565

Hox and Cdx transcription factors regulate embryonic positional identities. Cdx mutant mice display posterior body truncations of the axial skeleton, neuraxis, and caudal urorectal structures. We show that trunk Hox genes stimulate axial extension, as they can largely rescue these Cdx mutant phenotypes. Conversely, posterior (paralog group 13) Hox genes can prematurely arrest posterior axial growth when precociously expressed. Our data suggest that the transition from trunk to tail Hox gene expression successively regulates the construction and termination of axial structures in the mouse embryo. Thus, Hox genes seem to differentially orchestrate posterior expansion of embryonic tissues during axial morphogenesis as an integral part of their function in specifying head-to-tail identity. In addition, we present evidence that Cdx and Hox transcription factors exert these effects by controlling Wnt signaling. Concomitant regulation of Cyp26a1 expression, restraining retinoic acid signaling away from the posterior growth zone, may likewise play a role in timing the trunk-tail transition.


Body Patterning/genetics , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Gene Expression Regulation, Developmental , Genes, Homeobox/physiology , Homeodomain Proteins/genetics , Transcription Factors/genetics , Animals , Antineoplastic Agents/pharmacology , Blotting, Western , CDX2 Transcription Factor , Cytochrome P-450 Enzyme System/metabolism , Extremities/embryology , Gene Expression Profiling , Mice , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Retinoic Acid 4-Hydroxylase , Reverse Transcriptase Polymerase Chain Reaction , Skeleton , Tretinoin/pharmacology , Wnt Proteins/metabolism
...