Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
PLoS One ; 19(2): e0296842, 2024.
Article En | MEDLINE | ID: mdl-38346034

Potato wart disease is caused by the obligate fungal pathogen Synchytrium endobioticum. DNA extraction from compost, purified spores and crude wart tissue derived from tuber galls of infected potatoes often results in low S. endobioticum DNA concentration or highly contaminated with DNA coming from other microorganisms and the potato host. Therefore, Illumina sequencing of these samples generally results in suboptimal recovery of the nuclear genome sequences of S. endobioticum. A hybridization-based target enrichment protocol was developed to strongly enhance the recovery of S. endobioticum DNA while off-target organisms DNA remains uncaptured. The design strategy involved creating a set of 180,000 molecular baits targeting both gene and non-gene regions of S. endobioticum. The baits were applied to whole genome amplified DNA samples of various S. endobioticum pathotypes (races) in compost, from purified spores and crude wart tissue samples. This was followed by Illumina sequencing and bioinformatic analyses. Compared to non-enriched samples, target enriched samples: 1) showed a significant increase in the proportion of sequenced bases mapped to the S. endobioticum nuclear genome, especially for crude wart tissue samples; 2) yielded sequencing data with higher and better nuclear genome coverage; 3) biased genome assembly towards S. endobioticum sequences, yielding smaller assembly sizes but higher representation of putative S. endobioticum contigs; 4) showed an increase in the number of S. endobioticum genes detected in the genome assemblies. Our hybridization-based target enrichment protocol offers a valuable tool for enhancing genome sequencing and NGS-based molecular detection of S. endobioticum, especially in difficult samples.


Chytridiomycota , Warts , Chytridiomycota/genetics , Base Sequence , DNA
2.
BMC Ecol Evol ; 23(1): 28, 2023 07 03.
Article En | MEDLINE | ID: mdl-37400779

BACKGROUND: The false codling moth (FCM), Thaumatotibia leucotreta (Meyrick, 1913), is a significant pest of various important economic crops and is a EU quarantine pest. In the last decade the pest has been reported on Rosa spp. In this study we determined whether this shift occurred within specific FCM populations across seven eastern sub-Saharan countries or whether the species opportunistically switches to this novel host as it presents itself. To achieve this, we assessed the genetic diversity of complete mitogenomes of T. leucotreta specimens intercepted at import and analysed potential linkages with the geographical origin and host species. RESULTS: Genomic, geographical and host information were integrated into a T. leucotreta Nextstrain build which contains 95 complete mitogenomes generated from material intercepted at import between January 2013 and December 2018. Samples represented seven sub-Saharan countries and mitogenomic sequences grouped in six main clades. DISCUSSION: If host strains of FCM would exist, specialization from a single haplotype towards the novel host is expected. Instead, we find specimens intercepted on Rosa spp. in all six clades. The absence of linkage between genotype and host suggests opportunistic expansion to the new host plant. This underlines risks of introducing new plant species to an area as the effect of pests already present on the new plant might be unpredictable with current knowledge.


Genome, Mitochondrial , Moths , Animals , Genome, Mitochondrial/genetics , Host Specificity , Moths/genetics , Genotype , Haplotypes/genetics
3.
Mol Plant Pathol ; 23(4): 461-474, 2022 04.
Article En | MEDLINE | ID: mdl-35029012

Potato wart disease is considered one of the most important quarantine pests for cultivated potato and is caused by the obligate biotrophic chytrid fungus Synchytrium endobioticum. This review integrates observations from early potato wart research and recent molecular, genetic, and genomic studies of the pathogen and its host potato. Taxonomy, epidemiology, pathology, and formation of new pathotypes are discussed, and a model for molecular S. endobioticum-potato interaction is proposed. TAXONOMY: Currently classified as kingdom: Fungi, phylum: Chytridiomycota, class: Chytridiomycetes, order: Chytridiales, family: Synchytriaceae, genus: Synchytrium, species: Synchytrium endobioticum, there is strong molecular support for Synchytriaceae to be transferred to the order Synchytriales. HOSTS AND DISEASE SYMPTOMS: Solanum tuberosum is the main host for S. endobioticum but other solanaceous species have been reported as alternative hosts. It is not known if these alternative hosts play a role in the survival of the pathogen in (borders of) infested fields. Disease symptoms on potato tubers are characterized by the warty cauliflower-like malformations that are the result of cell enlargement and cell multiplication induced by the pathogen. Meristematic tissue on tubers, stolons, eyes, sprouts, and inflorescences can be infected while the potato root system seems to be immune. PATHOTYPES: For S. endobioticum over 40 pathotypes, which are defined as groups of isolates with a similar response to a set of differential potato varieties, are described. Pathotypes 1(D1), 2(G1), 6(O1), and 18(T1) are currently regarded to be most widespread. However, with the current differential set other pathogen diversity largely remains undetected. PATHOGEN-HOST INTERACTION: A single effector has been described for S. endobioticum (AvrSen1), which is recognized by the potato Sen1 resistance gene product. This is also the first effector that has been described in Chytridiomycota, showing that in this fungal division resistance also fits the gene-for-gene concept. Although significant progress was made in the last decade in mapping wart disease resistance loci, not all resistances present in potato breeding germplasm could be identified. The use of resistant varieties plays an essential role in disease management.


Chytridiomycota , Solanum tuberosum , Warts , Chytridiomycota/genetics , Plant Breeding , Plant Diseases/microbiology , Solanum tuberosum/microbiology
4.
Phytopathology ; 112(5): 1152-1164, 2022 May.
Article En | MEDLINE | ID: mdl-34818905

Rotylenchus is a widely distributed, economically important plant-parasitic nematode group whose species-level identification relies largely on limited morphological characters, including character-based tabular keys and molecular data of ribosomal and mitochondrial genes. In this study, a combined morphological and molecular analysis of three populations of Rotylenchus goodeyi from Belgium, Poland, and the Netherlands revealed important character variations of this species, leading to synonymization of R. rhomboides with R. goodeyi and a high nucleotide variation within cox1 gene sequences in these populations. Additional Illumina sequencing of DNA from individuals of the Dutch population revealed two variants of mitogenomes, each approximately 23 Kb in size, differing by approximately 9% and containing 11 protein-coding genes, 2 ribosomal RNA genes, and as many as 29 transfer RNA genes. In addition to the first representative whole-genome shotgun sequence datasets of the genus Rotylenchus, this study also provides the full-length mitogenome and the ribosomal DNA sequences of R. goodeyi.


Genome, Mitochondrial , Nematoda , Tylenchoidea , Animals , Genome, Mitochondrial/genetics , Humans , Nematoda/genetics , Phylogeny , Plant Diseases , Sequence Analysis, DNA , Tylenchoidea/genetics
5.
PLoS One ; 15(10): e0234671, 2020.
Article En | MEDLINE | ID: mdl-33031371

Tomato brown rugose fruit virus (ToBRFV) is a Tobamovirus that was first observed in 2014 and 2015 on tomato plants in Israel and Jordan respectively. Since the first description, the virus has been reported from all continents except Oceania and Antarctica, and has been found infecting both tomato and pepper crops. In October 2019, the Dutch National Plant Protection Organization received a ToBRFV infected tomato sample as part of a generic survey targeting tomato pests. Presence of the virus was verified using Illumina sequencing. A follow-up survey was initiated to determine the extent of ToBRFV presence in the Dutch tomato horticulture and identify possible linkages between ToBRFV genotypes, companies and epidemiological traits. Nextstrain was used to visualize these potential connections. By November 2019, 68 companies had been visited of which 17 companies were found to be infected. The 50 ToBRFV genomes from these outbreak locations group in three main clusters, which are hypothesized to represent three original sources. No correlation was found between genotypes, companies and epidemiological traits, and the source(s) of the Dutch ToBRFV outbreak remain unknown. This paper describes a Nextstrain build containing ToBRFV genomes up to and including November 2019. Sharing data with this interactive online tool will enable the plant virology field to better understand and communicate the diversity and spread of this new virus. Organizations are invited to share data or materials for inclusion in the Nextstrain build, which can be accessed at https://nextstrain.nrcnvwa.nl/ToBRFV/20191231.


Plant Diseases/virology , Sequence Analysis, RNA/methods , Solanum lycopersicum/virology , Tobamovirus/isolation & purification , Computational Biology , Disease Outbreaks/statistics & numerical data , Genotype , High-Throughput Nucleotide Sequencing , Information Dissemination , Netherlands/epidemiology , Plant Diseases/statistics & numerical data , RNA, Viral/genetics , Tobamovirus/genetics
6.
PLoS One ; 14(8): e0221182, 2019.
Article En | MEDLINE | ID: mdl-31412079

The pepper weevil, Anthonomus eugenii, is a major pest on Capsicum species. Apart from natural spread, there is a risk of spread via international pepper trade. In the Netherlands, a pepper weevil outbreak occurred in 2012 and affected six greenhouses producing different sweet pepper varieties. The following year, a pepper weevil outbreak occurred in Italy. To trace the origin of the Dutch outbreak and to establish if the Dutch and Italian outbreaks were linked, we determined the mitogenomes of A. eugenii specimens collected at outbreak locations, and compared these with specimens from the native area, and other areas where the pest was introduced either by natural dispersal or via trade. The circular 17,257 bp A. eugenii mitogenome comprises thirteen mitochondrial genes typically found in insect species. Intra-species variation of these mitochondrial genes revealed four main mitochondrial lineages encompassing 41 haplotypes. The highest diversity was observed for specimens from its presumed native area (i.e. Mexico). The Dutch outbreak specimens represented three highly similar haplotypes, suggesting a single introduction of the pest. The major Dutch haplotype was also found in two specimens from New Jersey. As the Netherlands does not have pepper trade with New Jersey, it is likely that the specimens sampled in New Jersey and those sampled in the Netherlands originate from a shared source that was not included in this study. In addition, our analysis shows that the Italian and Dutch outbreaks were not linked. The mitochondrial genome is a useful tool to trace outbreak populations and the methodology presented in this paper could prove valuable for other invasive pest species, such as the African fruit moth Thaumatotibia leucotreta and emerald ash borer Agrilus planipennis.


Capsicum/parasitology , Genome, Insect , Genome, Mitochondrial , Haplotypes , Plant Diseases , Weevils/genetics , Animals , Mexico , Netherlands , Plant Diseases/genetics , Plant Diseases/parasitology
7.
Sci Rep ; 9(1): 8672, 2019 06 17.
Article En | MEDLINE | ID: mdl-31209237

Synchytrium endobioticum is an obligate biotrophic soilborne Chytridiomycota (chytrid) species that causes potato wart disease, and represents the most basal lineage among the fungal plant pathogens. We have chosen a functional genomics approach exploiting knowledge acquired from other fungal taxa and compared this to several saprobic and pathogenic chytrid species. Observations linked to obligate biotrophy, genome plasticity and pathogenicity are reported. Essential purine pathway genes were found uniquely absent in S. endobioticum, suggesting that it relies on scavenging guanine from its host for survival. The small gene-dense and intron-rich chytrid genomes were not protected for genome duplications by repeat-induced point mutation. Both pathogenic chytrids Batrachochytrium dendrobatidis and S. endobioticum contained the largest amounts of repeats, and we identified S. endobioticum specific candidate effectors that are associated with repeat-rich regions. These candidate effectors share a highly conserved motif, and show isolate specific duplications. A reduced set of cell wall degrading enzymes, and LysM protein expansions were found in S. endobioticum, which may prevent triggering plant defense responses. Our study underlines the high diversity in chytrids compared to the well-studied Ascomycota and Basidiomycota, reflects characteristic biological differences between the phyla, and shows commonalities in genomic features among pathogenic fungi.


Chytridiomycota/genetics , Fungal Proteins/genetics , Genome, Fungal , Phylogeny , Plant Diseases/microbiology , Solanum tuberosum/microbiology , Ascomycota/classification , Ascomycota/genetics , Ascomycota/metabolism , Basidiomycota/classification , Basidiomycota/genetics , Basidiomycota/metabolism , Cell Wall/chemistry , Cell Wall/microbiology , Chytridiomycota/classification , Chytridiomycota/metabolism , Conserved Sequence , Fungal Proteins/metabolism , Gene Duplication , Gene Expression , Gene Ontology , Genetic Variation , Genomics/methods , Guanine/metabolism , Hydrolases/genetics , Hydrolases/metabolism , Microsatellite Repeats , Molecular Sequence Annotation , Plant Cells/microbiology , Point Mutation
8.
Mol Plant Microbe Interact ; 32(11): 1536-1546, 2019 Nov.
Article En | MEDLINE | ID: mdl-31246152

Synchytrium endobioticum is an obligate biotrophic fungus of division Chytridiomycota. It causes potato wart disease, has a worldwide quarantine status and is included on the Health and Human Services and United States Department of Agriculture Select Agent list. S. endobioticum isolates are grouped in pathotypes based on their ability to evade host resistance in a set of differential potato varieties. Thus far, 39 pathotypes are reported. A single dominant gene (Sen1) governs pathotype 1 (D1) resistance and we anticipated that the underlying molecular model would involve a pathogen effector (AvrSen1) that is recognized by the host. The S. endobioticum-specific secretome of 14 isolates representing six different pathotypes was screened for effectors specifically present in pathotype 1 (D1) isolates but absent in others. We identified a single AvrSen1 candidate. Expression of this candidate in potato Sen1 plants showed a specific hypersensitive response (HR), which cosegregated with the Sen1 resistance in potato populations. No HR was obtained with truncated genes found in pathotypes that evaded recognition by Sen1. These findings established that our candidate gene was indeed Avrsen1. The S. endobioticum AvrSen1 is a single-copy gene and encodes a 376-amino-acid protein without predicted function or functional domains, and is the first effector gene identified in Chytridiomycota, an extremely diverse yet underrepresented basal lineage of fungi.


Chytridiomycota , Genes, Fungal , Solanum tuberosum , Chytridiomycota/classification , Chytridiomycota/genetics , Chytridiomycota/immunology , Genes, Fungal/immunology , Plant Diseases/immunology , Plant Diseases/microbiology , Solanum tuberosum/immunology , Solanum tuberosum/microbiology
9.
BMC Evol Biol ; 18(1): 136, 2018 09 10.
Article En | MEDLINE | ID: mdl-30200892

BACKGROUND: Chytridiomycota species (chytrids) belong to a basal lineage in the fungal kingdom. Inhabiting terrestrial and aquatic environments, most are free-living saprophytes but several species cause important diseases: e.g. Batrachochytrium dendrobatidis, responsible for worldwide amphibian decline; and Synchytrium endobioticum, causing potato wart disease. S. endobioticum has an obligate biotrophic lifestyle and isolates can be further characterized as pathotypes based on their virulence on a differential set of potato cultivars. Quarantine measures have been implemented globally to control the disease and prevent its spread. We used a comparative approach using chytrid mitogenomes to determine taxonomical relationships and to gain insights into the evolution and recent history of introductions of this plant pathogen. RESULTS: We assembled and annotated the complete mitochondrial genome of 30 S. endobioticum isolates and generated mitochondrial genomes for five additional chytrid species. The mitochondrial genome of S. endobioticum is linear with terminal inverted repeats which was validated by tailing and PCR amplifying the telomeric ends. Surprisingly, no conservation in organisation and orientation of mitochondrial genes was observed among the Chytridiomycota except for S. endobioticum and its sister species Synchytrium microbalum. However, the mitochondrial genome of S. microbalum is circular and comprises only a third of the 72.9 Kbp found for S. endobioticum suggesting recent linearization and expansion. Four mitochondrial lineages were identified in the S. endobioticum mitochondrial genomes. Several pathotypes occur in different lineages, suggesting that these have emerged independently. In addition, variations for polymorphic sites in the mitochondrial genome of individual isolates were observed demonstrating that S. endobioticum isolates represent a community of different genotypes. Such communities were shown to be complex and stable over time, but we also demonstrate that the use of semi-resistant potato cultivars triggers a rapid shift in the mitochondrial haplotype associated with increased virulence. CONCLUSIONS: Mitochondrial genomic variation shows that S. endobioticum has been introduced into Europe multiple times, that several pathotypes emerged multiple times, and that isolates represent communities of different genotypes. Our study represents the most comprehensive dataset of chytrid mitogenomes, which provides new insights into the extraordinary dynamics and evolution of mitochondrial genomes involving linearization, expansion and reshuffling.


Biological Evolution , Chytridiomycota/genetics , Genome, Mitochondrial , Plants/microbiology , Animals , Bayes Theorem , Chytridiomycota/pathogenicity , DNA, Mitochondrial/genetics , Europe , Genetic Variation , Haplotypes/genetics , Molecular Sequence Annotation , Phylogeny , Plant Diseases/microbiology , Quarantine , Reproducibility of Results , Species Specificity , Virulence/genetics
10.
PLoS One ; 10(11): e0142912, 2015.
Article En | MEDLINE | ID: mdl-26558366

The Old World bollworm, Helicoverpa armigera (Hübner), and the corn earworm, H. zea (Boddie), are two of the most important agricultural pests in the world. Diagnosing these two species is difficult-adults can only be separated with a complex dissection, and larvae cannot be identified to species using morphology, necessitating the use of geographic origin for identification in most instances. With the discovery of H. armigera in the New World, identification of immature Helicoverpa based on origin is no longer possible because H. zea also occurs in all of the geographic regions where H. armigera has been discovered. DNA barcoding and restriction fragment length polymorphism (RFLP) analyses have been reported in publications to distinguish these species, but these methods both require post-PCR processing (i.e., DNA sequencing or restriction digestion) to complete. We report the first real-time PCR assay to distinguish these pests based on two hydrolysis probes that bind to a segment of the internal transcribed spacer region 2 (ITS2) amplified using a single primer pair. One probe targets H. armigera, the second probe targets H. zea, and a third probe that targets a conserved segment of 18S rDNA is used as a control of DNA quality. The assay can be completed in 50 minutes when using isolated DNA and is successfully tested on larvae intercepted at ports of entry and adults captured during domestic surveys. We demonstrate that the assay can be run in triplex with no negative effects on sensitivity, can be run using alternative real-time PCR reagents and instruments, and does not cross react with other New World Heliothinae.


DNA/chemistry , Moths/genetics , Animals , Base Sequence , Crops, Agricultural/parasitology , DNA Primers/metabolism , Larva/genetics , Molecular Sequence Data , Moths/growth & development , RNA, Ribosomal, 18S/chemistry , RNA, Ribosomal, 18S/genetics , Real-Time Polymerase Chain Reaction , Sequence Alignment , Sequence Analysis, DNA , Glycine max/parasitology
11.
Mycologia ; 107(1): 54-65, 2015.
Article En | MEDLINE | ID: mdl-25261495

In the past decade several Phytophthora strains were isolated from diseased Pachysandra terminalis plants suffering stem base and root rot, originating from the Netherlands and Belgium. All isolates were homothallic and had a felt-like colony pattern, produced semi-papillate sporangia, globose oogonia and had a maximum growth at ~ 27 C. Several additional Phytophthora strains were isolated from diseased Buxus sempervirens plants, originating from the Netherlands and Belgium, which had sustained stem base and root rot; similar strains also were isolated from Acer palmatum, Choisya ternata and Taxus in the United Kingdom. All isolates were homothallic and had a stellate colony pattern, produced larger semi-papillate sporangia and smaller globose oogonia than the isolates from Pa. terminalis and had a maximum growth temperature of ~ 30 C. Phylogenetic analyses of both species using the internal transcribed spacer region of the nuc rDNA (ITS), mt cytochrome oxidases subunit I gene (CoxI) and nuc translation elongation factor 1-α gene (TEF1α) revealed that all sequences of each species were identical at each locus and unique to that species, forming two distinct clusters in subclade 2a. Sequence analysis of partial ß-tubulin genes showed that both taxa share an identical sequence that is identical to that of Ph. himalsilva, a species originating from Asia, suggesting a common Asian origin. Pathogenicity trials demonstrated disease symptoms on their respective hosts, and re-isolation and re-identification of the inoculated pathogens confirmed Koch's postulates.


Phytophthora/isolation & purification , Plant Diseases/microbiology , Plants/microbiology , Europe , Molecular Sequence Data , Phylogeny , Phytophthora/classification , Phytophthora/genetics , Phytophthora/growth & development , Spores, Fungal/classification , Spores, Fungal/genetics , Spores, Fungal/growth & development , Spores, Fungal/isolation & purification
...