Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(32): e2404536121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39088396

RESUMEN

Alcelaphine gammaherpesvirus 1 (AlHV-1) asymptomatically persists in its natural host, the wildebeest. However, cross-species transmission to cattle results in the induction of an acute and lethal peripheral T cell lymphoma-like disease (PTCL), named malignant catarrhal fever (MCF). Our previous findings demonstrated an essential role for viral genome maintenance in infected CD8+ T lymphocytes but the exact mechanism(s) leading to lymphoproliferation and MCF remained unknown. To decipher how AlHV-1 dysregulates T lymphocytes, we first examined the global phenotypic changes in circulating CD8+ T cells after experimental infection of calves. T cell receptor repertoire together with transcriptomics and epigenomics analyses demonstrated an oligoclonal expansion of infected CD8+ T cells displaying effector and exhaustion gene signatures, including GZMA, GNLY, PD-1, and TOX2 expression. Then, among viral genes expressed in infected CD8+ T cells, we uncovered A10 that encodes a transmembrane signaling protein displaying multiple tyrosine residues, with predicted ITAM and SH3 motifs. Impaired A10 expression did not affect AlHV-1 replication in vitro but rendered AlHV-1 unable to induce MCF. Furthermore, A10 was phosphorylated in T lymphocytes in vitro and affected T cell signaling. Finally, while AlHV-1 mutants expressing mutated forms of A10 devoid of ITAM or SH3 motifs (or both) were able to induce MCF, a recombinant virus expressing a mutated form of A10 unable to phosphorylate its tyrosine residues resulted in the lack of MCF and protected against a wild-type virus challenge. Thus, we could characterize the nature of this γ-herpesvirus-induced PTCL-like disease and identify an essential mechanism explaining its development.


Asunto(s)
Linfocitos T CD8-positivos , Gammaherpesvirinae , Animales , Linfocitos T CD8-positivos/inmunología , Gammaherpesvirinae/genética , Gammaherpesvirinae/inmunología , Bovinos , Fiebre Catarral Maligna/virología , Fiebre Catarral Maligna/inmunología , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología
2.
Viruses ; 15(2)2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36851740

RESUMEN

Gammaherpesviruses (γHVs) include viruses that can induce lymphoproliferative diseases and tumors. These viruses can persist in the long term in the absence of any pathological manifestation in their natural host. Alcelaphine gammaherpesvirus 1 (AlHV-1) belongs to the genus Macavirus and asymptomatically infects its natural host, the wildebeest (Connochaetes spp.). However, when transmitted to several susceptible species belonging to the order Artiodactyla, AlHV-1 is responsible for the induction of a lethal lymphoproliferative disease, named wildebeest-derived malignant catarrhal fever (WD-MCF). Understanding the pathogenic mechanisms responsible for the induction of WD-MCF is important to better control the risks of transmission and disease development in susceptible species. The aim of this review is to synthesize the current knowledge on WD-MCF with a particular focus on the mechanisms by which AlHV-1 induces the disease. We discuss the potential mechanisms of pathogenesis from viral entry into the host to the maintenance of viral genomes in infected CD8+ T lymphocytes, and we present current hypotheses to explain how AlHV-1 infection induces a peripheral T cell lymphoma-like disease.


Asunto(s)
Antílopes , Gammaherpesvirinae , Linfoma de Células T Periférico , Fiebre Catarral Maligna , Bovinos , Animales
3.
Emerg Infect Dis ; 29(2): 351-359, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36692362

RESUMEN

The high economic impact and zoonotic potential of avian influenza call for detailed investigations of dispersal dynamics of epidemics. We integrated phylogeographic and epidemiologic analyses to investigate the dynamics of a low pathogenicity avian influenza (H3N1) epidemic that occurred in Belgium during 2019. Virus genomes from 104 clinical samples originating from 85% of affected farms were sequenced. A spatially explicit phylogeographic analysis confirmed a dominating northeast to southwest dispersal direction and a long-distance dispersal event linked to direct live animal transportation between farms. Spatiotemporal clustering, transport, and social contacts strongly correlated with the phylogeographic pattern of the epidemic. We detected only a limited association between wind direction and direction of viral lineage dispersal. Our results highlight the multifactorial nature of avian influenza epidemics and illustrate the use of genomic analyses of virus dispersal to complement epidemiologic and environmental data, improve knowledge of avian influenza epidemiologic dynamics, and enhance control strategies.


Asunto(s)
Epidemias , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Gripe Aviar/epidemiología , Bélgica/epidemiología , Trazado de Contacto , Filogeografía , Filogenia , Pollos
4.
Viruses ; 14(5)2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35632817

RESUMEN

Burundi is a small, densely populated country in the African Great Lakes region. In March 2016, several hundreds of cattle were reported with vesicular lesions, suggesting foot-and-mouth disease (FMD). Epithelial samples, saliva, and blood were collected in six of the affected provinces spread over the country. The overall seroprevalence of FMD virus (FMDV) in the affected herds, as determined by antibodies against FMDV non-structural proteins, was estimated at 87%. Antibodies against FMDV serotypes O (52%), A (44%), C (19%), SAT1 (36%), SAT2 (58%), and SAT3 (23%) were detected across the provinces. FMDV genome was detected in samples from five of the six provinces using rRT-PCR. FMDV was isolated from samples from three provinces: in Cibitoke province, serotypes A and SAT2 were isolated, while in Mwaro and Rutana provinces, only serotype SAT2 was isolated. In Bururi and Cankuzo provinces, the serological profile suggested a recent incursion with serotype SAT2, while in Bubanza province, the serological profile suggested past incursions with serotype O and possibly serotype SAT1. The phylogenetic assessments showed the presence of topotypes A/Africa/G-I and SAT2/IV, similarly to previously characterized virus strains from other countries in the region, suggesting a transboundary origin and necessitating a regional approach for vaccination and control of FMD.


Asunto(s)
Enfermedades de los Bovinos , Virus de la Fiebre Aftosa , Fiebre Aftosa , África Oriental/epidemiología , Animales , Burundi/epidemiología , Bovinos , Enfermedades de los Bovinos/epidemiología , Brotes de Enfermedades/veterinaria , Fiebre Aftosa/epidemiología , Filogenia , Estudios Seroepidemiológicos , Serogrupo
5.
Transbound Emerg Dis ; 69(3): 986-996, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33909351

RESUMEN

The aim of this review paper is to evaluate the putative susceptibilities of different free-ranging wild animal species in Belgium to SARS-CoV-2 and provide a risk assessment of SARS-CoV-2 infection in those animals. Since the onset of the COVID-19 pandemic, natural SARS-CoV-2 infections have mainly been confirmed in domestic and production animals, and in wild animals kept in captivity, although the numbers remain limited when compared to human cases. Recently, the first SARS-CoV-2 infections in presumably escaped minks found in the wild have been detected, further addressing the much-feared scenario of transmission of the virus to animals living in the wild and its consequences. Considering the most likely origin of the virus being a wild animal and the putative susceptibilities of free-ranging wild animal species to SARS-CoV-2, the risk of infection with possible establishment of the virus in these populations has to be investigated closely. The authors conclude that most attention should be given to surveillance and awareness-raising activities for SARS-CoV-2 infection in wild mustelids, bats, wild canids and felids, particularly these collected in wildlife rescue centres. People involved in frequent and close contact with wild animals should take all necessary precautionary measures to protect wild animals against exposure to the virus. More than one year after the first detection of SARS-CoV-2 in humans, the time has come to increase investments in research and surveillance activities in animals, including in free-ranging wild animals, as part of a One Health control of this pandemic. This study focussing on Belgium could be helpful for other countries with similar animal densities and ecosystems.


Asunto(s)
COVID-19 , Animales , Animales Salvajes , Bélgica/epidemiología , COVID-19/epidemiología , COVID-19/veterinaria , Ecosistema , Humanos , Pandemias , Medición de Riesgo , SARS-CoV-2
6.
Virus Genes ; 57(6): 529-540, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34626348

RESUMEN

Infectious bronchitis virus (IBV, genus Gammacoronavirus) causes an economically important and highly contagious disease in chicken. Random primed RNA sequencing was applied to two IBV positive clinical samples and one in ovo-passaged virus. The virome of a cloacal swab pool was dominated by IBV (82% of viral reads) allowing de novo assembly of a GI-13 lineage complete genome with 99.95% nucleotide identity to vaccine strain 793B. In addition, substantial read counts (16% of viral reads) allowed the assembly of a near-complete chicken astrovirus genome, while lower read counts identified the presence of chicken calicivirus and avian leucosis virus. Viral reads in a respiratory/intestinal tissue pool were distributed between IBV (22.53%), Sicinivirus (Picornaviridae, 24%), and avian leucosis virus (37.04%). A complete IBV genome with 99.95% nucleotide identity to vaccine strain H120 (lineage GI-1), as well as a near-complete avian leucosis virus genome and a partial Sicinivirus genome were assembled from the tissue sample data. Lower read counts identified chicken calicivirus, Avibirnavirus (infectious bursal disease virus, assembling to 98.85% of segment A and 69.66% of segment B closely related to D3976/1 from Germany, 2017) and avian orthoreovirus, while three avian orthoavulavirus 1 reads confirmed prior real-time RT-PCR result. IBV sequence variation analysis identified both fixed and minor frequency variations in the tissue sample compared to its in ovo-passaged virus. Metagenomic methods allow the determination of complete coronavirus genomes from clinical chicken samples while providing additional insights in RNA virus sequence diversity and coinfecting viruses potentially contributing to pathogenicity.


Asunto(s)
Pollos/virología , Genómica , Virus de la Bronquitis Infecciosa/clasificación , Virus de la Bronquitis Infecciosa/genética , Viroma/genética , Animales , Virus de la Bronquitis Infecciosa/patogenicidad , Enfermedades de las Aves de Corral/virología
7.
Transbound Emerg Dis ; 68(5): 2761-2773, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33713549

RESUMEN

Since the introduction in Georgia in 2007 of an African swine fever (ASF) genotype 2 virus strain, the virus has rapidly spread to both Western European and Asian countries. It now constitutes a major threat for the global swine industry. The ongoing European transmission cycle has been related to the 'wild boar habitat' with closed transmission events between wild boar populations and incidental spillovers to commercial and non-commercial (backyard) pig holdings. During the epidemic in Belgium, only wild boar were infected and although the introduction route has not yet been elucidated, the 'human factor' is highly suspected. While ASF was successfully contained in a small region in the Southern part of Belgium without affecting domestic pigs, the risk of spillover at the wild/domestic interface remains poorly assessed. In this study, we used a semi-quantitative method, involving national and international experts, to assess the risk associated with different transmission routes for ASF introduction from wild boar to domestic pig holdings and subsequent dissemination between holdings in the Belgian epidemiological context. Qualitative responses obtained by our questionnaire were numerically transformed and statistically processed to provide a semi-quantitative assessment of the occurrence of the hazard and a ranking of all transmission routes. 'Farmer', 'bedding material', 'veterinarian' and 'professionals from the pig sector' were considered as the most important transmission routes for ASF introduction from the wild reservoir to pig holdings. 'Animal movements', 'farmer', 'veterinarian', 'iatrogenic', 'animal transport truck' and 'animal care equipment' were considered as the most important transmission routes posing a risk of ASF spread between pig holdings. Combined with specific biosecurity checks in the holdings, this assessment helps in prioritizing risk mitigation measures against ASF introduction and further spread in the domestic pig industry, particularly while the ASF situation in Western Europe is worsening.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Fiebre Porcina Africana/epidemiología , Animales , Bélgica/epidemiología , Brotes de Enfermedades/veterinaria , Medición de Riesgo , Sus scrofa , Porcinos
8.
Transbound Emerg Dis ; 68(4): 2147-2160, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33012090

RESUMEN

After two decades free of Newcastle disease, Belgium encountered a velogenic avian orthoavulavirus type 1 epizootic in 2018. In Belgium, 20 cases were diagnosed, of which 15 occurred in hobby flocks, 2 in professional poultry flocks and 3 in poultry retailers. The disease also disseminated from Belgium towards the Grand Duchy of Luxembourg by trade. Independently, the virus was detected once in the Netherlands, almost simultaneously to the first Belgian detection. As such Newcastle disease emerged in the entire BeNeLux region. Both the polybasic sequence of the fusion gene cleavage site and the intracerebral pathotyping assay demonstrated the high pathogenicity of the strain. This paper represents the first notification of this specific VII.2 subgenotype in the North-West of Europe. Time-calibrated full genome phylogenetic analysis indicated the silent or unreported circulation of the virus prior to the emergence of three genetic clusters in the BeNeLux region without clear geographical or other epidemiological correlation. The Dutch strain appeared as an outgroup to the Belgian and Luxembourgian strains in the time-correlated genetic analysis and no epidemiological link could be identified between the Belgian and Dutch outbreaks. In contrast, both genetic and epidemiological outbreak investigation data linked the G.D. Luxembourg case to the Belgian outbreak. The genetic links between Belgian viruses from retailers and hobby flocks only partially correlated with epidemiological data. Two independent introductions into the professional poultry sector were identified, although their origin could not be determined. Animal experiments using 6-week- old specific pathogen-free chickens indicated a systemic infection and efficient transmission of the virus. The implementation of re-vaccination in the professional sector, affected hobby and retailers, as well as the restriction on assembly and increased biosecurity measures, possibly limited the epizootic and resulted in the disappearance of the virus. These findings emphasize the constant need for awareness and monitoring of notifiable viruses in the field.


Asunto(s)
Enfermedad de Newcastle , Enfermedades de las Aves de Corral , Animales , Pollos , Brotes de Enfermedades/veterinaria , Europa (Continente)/epidemiología , Genotipo , Enfermedad de Newcastle/epidemiología , Virus de la Enfermedad de Newcastle/genética , Filogenia , Aves de Corral , Enfermedades de las Aves de Corral/epidemiología
9.
Emerg Infect Dis ; 26(8): 1899-1903, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32687049

RESUMEN

In 2019, an outbreak of avian influenza (H3N1) virus infection occurred among commercial poultry in Belgium. Full-genome phylogenetic analysis indicated a wild bird origin rather than recent circulation among poultry. Although classified as a nonnotifiable avian influenza virus, it was associated with reproductive tropism and substantial mortality in the field.


Asunto(s)
Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Bélgica/epidemiología , Pollos , Brotes de Enfermedades , Gripe Aviar/epidemiología , Filogenia , Aves de Corral , Enfermedades de las Aves de Corral/epidemiología , Virulencia
10.
Emerg Infect Dis ; 25(1): 184-186, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30387416

RESUMEN

In September 2018, African swine fever in wild boars was detected in Belgium. We used African swine fever-infected spleen samples to perform a phylogenetic analysis of the virus. The causative strain belongs to genotype II, and its closest relatives are viruses previously isolated in Ukraine, Belarus, Estonia, and European Russia.


Asunto(s)
Virus de la Fiebre Porcina Africana/clasificación , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Animales , Bélgica , Genotipo , Filogenia , Filogeografía , Alineación de Secuencia/veterinaria , Sus scrofa , Porcinos
12.
Avian Pathol ; 47(6): 607-615, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30207746

RESUMEN

Avian influenza viruses have been isolated from many bird species; however, little is known about the susceptibility of pet birds to low pathogenic avian influenza (LPAI) viruses. To address this research gap, domestic canaries (Serinus canaria forma domestica) were experimentally infected with H5 and H7 LPAI viruses to determine susceptibility and to evaluate samples for diagnostic purposes. Clinical evidence of infection (e.g. ruffled plumage and apathy) and mortality were noted for the canaries inoculated with chicken-adapted LPAI viruses. Real-time reverse transcription-polymerase chain reaction (RRT-PCR) demonstrated higher viral RNA levels in buccal compared to faecal samples. No clinical signs or mortality were observed in canaries inoculated with LPAI virus originating from wild birds; however, the canaries in this group did have evidence of viral RNA in buccal and faecal samples. Overall, this study showed that domestic canaries are susceptible to LPAI virus infections and that they can shed large amounts of viral RNA, primarily through the respiratory route. Thus, buccal swabs might be better samples than faeces for efficient detection of some LPAI virus infections in these birds. Although canaries have not been identified as a significant reservoir for LPAI viruses, they may be infected by LPAI viruses. Thus, the importance of the control of domestic canaries for detection of LPAI viruses should not be underestimated, especially in the contexts of international commercial exchange and outbreaks. RESEARCH HIGHLIGHTS Canaries are susceptible to infection with H5/H7 LPAI viruses. Canaries inoculated with LPAI viruses excrete large amounts of viral RNA. Buccal swabs may be appropriate specimens for AI virus detection in canaries. The control of canaries for LPAI virus detection should not be overlooked.


Asunto(s)
Canarios/virología , Brotes de Enfermedades/veterinaria , Virus de la Influenza A/patogenicidad , Gripe Aviar/diagnóstico , Animales , Animales Domésticos , Susceptibilidad a Enfermedades/veterinaria , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , ARN Viral/análisis , ARN Viral/genética , Virulencia
13.
Vaccine ; 36(5): 615-623, 2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29290477

RESUMEN

Infectious bursal disease (IBD) remains a major threat to the poultry industry. Recombinant herpesvirus of turkey (rHVT)-IBD vaccines have been successfully used to induce a protective immune response against IBD. However, the capacity for rHVT-IBD vaccines to induce early protection without detectable antibodies, and the underlying mechanisms mediating specific cell-mediated responses in the early stages following vaccination, have been poorly investigated. Therefore, in this study, specific pathogen-free (SPF) chickens were vaccinated with rHVT-IBD and T-cell subsets were analyzed. Both splenic and circulating CD8+ cell populations increased at 7 days postvaccination (dpv). Next, the expression of adaptive immunity-related genes was analyzed in the spleen and lung of rHVT-IBD-vaccinated chickens. Upregulation of CD8 expression was observed at 7 dpv. Interestingly, a parallel increase in the transcription of granzymes A and K was also detected from 7 dpv. To our knowledge, the latter result is the first to be reported, and it suggests that cytotoxic activity of CD8+ T lymphocytes is activated. In contrast, expression of the innate genes examined remained largely unchanged following vaccination. To further investigate the IBD virus (IBDV)-specific responses triggered by rHVT-IBD vaccination, vaccinated chickens were inoculated with an attenuated IBDV strain with the aim of restimulating induced immune responses in vivo. The expression profiles of various genes associated with adaptive immune responses were subsequently analyzed in lung, spleen, and bursa of Fabricius samples. Significant upregulation of CD4, CD8, perforin, and IFNγ expression were observed in the bursa samples 7 days postinoculation (dpi). In the lung, transcript levels of CD8, granzymes and perforin were also significantly higher in the rHVT-IBD-vaccinated chickens at 7 dpi, thereby suggesting that specific cellular immune responses were activated. Overall, these results support the hypothesis that stimulation of specific CD8+ cell-mediated immunity contributes to the response against IBDV in rHVT-IBD-vaccinated chickens.


Asunto(s)
Infecciones por Birnaviridae/genética , Infecciones por Birnaviridae/inmunología , Expresión Génica , Inmunidad Celular/genética , Virus de la Enfermedad Infecciosa de la Bolsa/inmunología , Vacunas Virales/inmunología , Animales , Infecciones por Birnaviridae/prevención & control , Embrión de Pollo , Pollos , Citocinas/genética , Citocinas/metabolismo , Inmunidad Innata , Inmunofenotipificación , Linfocitos T/inmunología , Linfocitos T/metabolismo , Pavos , Vacunación
14.
Arch Public Health ; 75: 64, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29090094

RESUMEN

Elaborating from the European One Health/Ecohealth (OH/EH) workshop that took place in fall 2016 and aimed to bring together different communities and explore collaborative potential, the creation of European networks focusing on the development of important OH/EH perspectives was a direct output from discussions at the end of some sessions, in particular: - A network on transdisciplinary One Health education. - A network integrating inputs from social sciences in One Health/EcoHealth actions and networks. - A network aiming at translating research findings on the Environment-Microbiome-Health axis into policy making, with a view to make healthy ecosystems a cost-effective disease prevention healthcare strategy. It was also suggested that a European Community of Practice could be initiated in order to support these several concrete networking initiatives, and to help to promote the building of other emerging initiatives.

15.
Avian Pathol ; 46(3): 289-299, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27897452

RESUMEN

Infectious bursal disease (IBD) is an avian viral disease that causes severe economic losses in the poultry industry worldwide. The live IBD virus (IBDV) has a potential immunosuppressive effect. Currently available IBDV vaccines have shortcomings, prompting the development of safer and more effective vaccination approaches, including the use of the recombinant turkey herpesvirus vaccine expressing the immunogenic structural VP2 protein of IBDV (recombinant HVT (rHVT)-IBD). The objectives of this study were twofold: (i) to develop in vitro assays and molecular tools to detect the VP2 protein and gene and (ii) to evaluate cell-mediated immunity (CMI) induced by rHVT-IBD vaccination of day-old specific pathogen-free chickens. The VP2 protein expressed by rHVT-IBD-infected chicken embryo fibroblasts was detected using the enzyme-linked immunosorbent assay and immunofluorescence. Using molecular techniques, the VP2 gene was detected in various organs, providing a method to monitor vaccine uptake. rHVT-IBD vaccination induced CMI responses in specific pathogen-free chickens at 5 weeks. CMI was detected by measuring chicken interferon-gamma after ex vivo antigenic stimulation of splenocytes. Moreover, our results showed that the enzyme-linked immunospot approach is more sensitive in detecting chicken interferon-gamma than enzyme-linked immunosorbent assay. The tools developed in this study may be useful in the characterization of new-generation recombinant vaccines and the cellular immune response they induce.


Asunto(s)
Anticuerpos Antivirales/inmunología , Infecciones por Birnaviridae/veterinaria , Herpesvirus Meleágrido 1/inmunología , Virus de la Enfermedad Infecciosa de la Bolsa/inmunología , Enfermedades de las Aves de Corral/prevención & control , Vacunas Virales/inmunología , Animales , Infecciones por Birnaviridae/prevención & control , Infecciones por Birnaviridae/virología , Pollos , Ensayo de Inmunoadsorción Enzimática/veterinaria , Inmunidad Celular , Interferón gamma/inmunología , Masculino , Enfermedades de las Aves de Corral/virología , Organismos Libres de Patógenos Específicos , Vacunación/veterinaria , Vacunas Sintéticas/inmunología , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/inmunología
16.
Genome Announc ; 4(3)2016 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-27284153

RESUMEN

The complete coding sequences of four avian influenza A viruses (two H7N7, one H7N1, and one H9N2) circulating in wild waterfowl in Belgium from 2009 to 2012 were determined using Illumina sequencing. All viral genome segments represent viruses circulating in the Eurasian wild bird population.

17.
Avian Dis ; 60(1 Suppl): 191-201, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27309055

RESUMEN

Maternally derived antibodies (MDA) are known to provide early protection from disease but also to interfere with vaccination efficacy of young chicks. This interference phenomenon is well described in the literature for viral diseases such as infectious bursal disease, Newcastle disease (ND), and avian influenza (AI). The goal of this work was to investigate the impact of H5 MDA and/or ND virus (NDV) MDA on the vaccine efficacy of a recombinant NDV-H5-vectored vaccine (rNDV-H5) against two antigenically divergent highly pathogenic AI (HPAI) H5N1 challenges. In chickens with both H5 and NDV MDA, a strong interference was observed with reduced clinical protection when compared to vaccinated specific-pathogen-free (SPF) chickens. In contrast, in chickens from commercial suppliers with NDV MDA only, a beneficial impact on the vaccine efficacy was observed with full protection and reduced viral excretion in comparison with rNDV-H5-vaccinated SPF chickens. To distinguish between the respective effects of the H5 and NDV MDA, an SPF model where passive immunity had been artificially induced by inoculations of H5 and NDV hyperimmunized polysera, respectively, was used. In the presence of H5 artificial MDA, a strong interference reflected by a reduction in vaccine protection was demonstrated whereas no interference and even an enhancing protective effect was confirmed in presence of NDV MDA. The present work suggests that H5 and NDV MDA interact differently with the rNDV-H5 vaccine with different consequences on its efficacy, the mechanisms of which require further investigations.


Asunto(s)
Inmunidad Materno-Adquirida , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Aviar/inmunología , Enfermedad de Newcastle/inmunología , Virus de la Enfermedad de Newcastle/inmunología , Enfermedades de las Aves de Corral/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Pollos , Femenino , Subtipo H5N1 del Virus de la Influenza A/genética , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Gripe Aviar/prevención & control , Gripe Aviar/virología , Masculino , Enfermedad de Newcastle/prevención & control , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/genética , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/virología , Vacunas Combinadas/genética , Vacunas Combinadas/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
18.
Avian Dis ; 60(1 Suppl): 387-93, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27309083

RESUMEN

Active monitoring of avian influenza (AI) viruses in wild birds was initiated in Belgium in 2005 in response to the first highly pathogenic avian influenza (HPAI) H5N1 outbreaks occurring in Europe. In Belgium, active wild bird surveillance that targeted live-ringed and hunter-harvested wild birds was developed and maintained from 2005 onward. After one decade, this program assimilated, analyzed, and reported on over 35,000 swabs. The 2009-2014 datasets were used for the current analysis because detailed information was available for this period. The overall prevalence of avian influenza (AI) in samples from live-ringed birds during this period was 0.48% whereas it was 6.12% in hunter-harvested samples. While the ringing sampling targeted a large number of bird species and was realized over the years, the hunting sampling was mainly concentrated on mallard (Anas platyrhynchos) during the hunting season, from mid-August to late January. Even when using just AI prevalence for live-ringed A. platyrhynchos during the hunting season, the value remained significantly lower (2.10%) compared to that detected for hunter-harvested mallards. One explanation for this significant difference in viroprevalence in hunter-harvested mallards was the game restocking practice, which released captive-bred birds in the wild before the hunting period. Indeed, the released game restocking birds, having an AI-naïve immune status, could act as local amplifiers of AI viruses already circulating in the wild, and this could affect AI epidemiology. Also, the release into the wild of noncontrolled restocking birds might lead to the introduction of new strains in the natural environment, leading to increased AI presence in the environment. Consequently, the release of naïve or infected restocking birds may affect AI dynamics.


Asunto(s)
Anseriformes/virología , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Animales , Animales Salvajes/clasificación , Animales Salvajes/virología , Anseriformes/clasificación , Bélgica , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Estaciones del Año
19.
Vet Med Sci ; 2(1): 36-46, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29067179

RESUMEN

Serological monitoring is a feature of surveillance programmes for the detection of the circulation of notifiable low pathogenic avian influenza (LPAI) viruses in commercial poultry holdings. Commercial multispecies nucleoprotein (NP) enzyme-linked immunosorbent assays (ELISAs) have been replacing the haemagglutination inhibition (HI) test as pre-screening tools. Few comparative studies have been conducted to test sera from domestic ducks for diagnostic purposes. Therefore, we evaluated the correlation between commercial NP ELISAs and the HI test. Anti-NP and anti-haemagglutinin (HA) antibodies were measured in sera from domestic ducks that had undergone serological screening and from juvenile domestic Pekin ducks that were experimentally infected with LPAI viruses. The findings highlight an absence of a correlation between NP ELISA and HI results with both field and experimental duck sera. Dissimilar kinetics of the antibodies detected during the follow-up evaluation of the humoral immune responses in experimentally infected ducks may explain this lack of correlation. Indeed, anti-NP titres decreased over time, whereas anti-HA titres remained unchanged after inoculation with the H3N1 LPAI virus isolated from domestic duck or the H7N1 LPAI virus isolated from chicken. Despite these differences, the NP ELISA may serve as a valid pre-screening tool to detect circulating LPAI viruses in domestic duck populations at the flock level.

20.
Avian Dis ; 59(4): 498-507, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26629623

RESUMEN

Homosubtypic and heterosubtypic immunity in mallards (Anas platyrhynchos) play an important role in the avian influenza virus (AIV) diversity. The mechanisms of AIV replication among wild birds and the role of immunity in AIV diversity have thus not been completely clarified. During the monitoring of AI circulation among wild waterfowl in 2007-2008, two viruses (H3N8 and H1N1) were isolated from ducks caught in a funnel trap located in La Hulpe wetland in Belgium. H3N8 viruses were revealed to be more prevalent in the mallard population than was H1N1, which might suggest a better adaptation to this species. In order to investigate this hypothesis, we characterized both isolated viruses biologically by experimental inoculation. Virus excretion and humoral response induced by both isolated viruses were evaluated in mallards after a first infection followed by a homo- or heterosubtypic reinfection under controlled experimental conditions. The H1N1 virus had a delayed peak of excretion of 4 days compared to the H3N8, but the virus shedding was more limited, earlier, and shorter after each reinfection. Moreover, the H3N8 virus could spread to all ducks after homo- or heterosubtypic reinfections and during a longer period. Although the humoral response induced by both viruses after infection and reinfection could be detected efficiently by competitive ELISA, only a minimal H1 antibody response and almost no H3-specific antibodies could be detected by the HI test. Our results suggest that the H3N8 isolate replicates better in mallards under experimental controlled conditions.


Asunto(s)
Patos , Aptitud Genética , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N8 del Virus de la Influenza A/genética , Gripe Aviar/genética , Animales , Ensayo de Inmunoadsorción Enzimática/veterinaria , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N8 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Reacción en Cadena de la Polimerasa/veterinaria , Estaciones del Año , Esparcimiento de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA