Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Regul Toxicol Pharmacol ; 130: 105121, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35063568

RESUMEN

Excessive inhalation of cobalt (Co) dust can have harmful effects on the respiratory tract, yet all cobalt substances do not have the same potential for inducing toxicity. The prevalent hypothesis is that the potential of Co substances to release Co2+ ions in the organism and in cells drives their toxicity profile. Here, we explored the possibility of grouping Co substances for predicting inhalation toxicity based on in vitro data using the stabilization of hypoxia-inducible factor (HIF)-1α as a read out for intracellular Co ion content. We evaluated the potential of 11 inorganic Co compounds and two Co metal powder samples to stabilize intracellular HIF-1α in alveolar epithelial cells (A549) after 24 h exposure to 250-1000 µM Co equivalents. Cytotoxic activity of the substances was assessed in parallel after 72 h at the same doses. Two groups were identified: (1) substances with high intracellular bioavailability (n=9), causing cytotoxicity and stabilizing HIF-1α and (2) substances with low intracellular bioavailability (n = 4), and not inducing these effects. This study provides a link between screening-level data (solubility in artificial lung fluids, Tier 1) and hypothesized biological key events.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Cobalto/toxicidad , Subunidad alfa del Factor 1 Inducible por Hipoxia/efectos de los fármacos , Células A549 , Supervivencia Celular/efectos de los fármacos , Cobalto/farmacocinética , Endotoxinas/biosíntesis , Humanos , Exposición por Inhalación , Pruebas de Toxicidad
2.
Food Chem Toxicol ; 154: 112352, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34153347

RESUMEN

BACKGROUND: Nanotechnologies provide new opportunities for improving the safety, quality, shelf life, flavor and appearance of foods. The most common nanoparticles (NPs) in human diet are silver metal, mainly present in food packaging and appliances, and silicon and titanium dioxides used as additives. The rapid development and commercialization of consumer products containing these engineered NPs is, however, not well supported by appropriate toxicological studies and risk assessment. Local and systemic toxicity and/or disruption of the gut microbiota (GM) have already been observed after oral administration of NPs in experimental animals, but results are not consistent and doses used were often much higher than the estimated human intakes. In view of the strong evidence linking alterations of the GM to cardiometabolic (CM) diseases, we hypothesized that dietary NPs might disturb this GM-CM axis. MATERIALS AND METHODS: We exposed male C57BL/6JRj mice (n = 13 per dose group) to dietary NPs mixed in food pellets at doses relevant for human exposure: Ag (0, 4, 40 or 400 µg/kg pellet), SiO2 (0, 0.8, 8 and 80 mg/kg pellet) or TiO2 (0, 0.4, 4 or 40 mg/kg pellet). After 24 weeks of exposure, we assessed effects on the GM and CM health (n = 8 per dose group). The reversibility of the effects was examined after 8 additional weeks without NPs exposure (recovery period, n ≤ 5 per dose group). RESULTS: No overt toxicity was recorded. The GM ß-diversity was dose-dependently disrupted by the three NPs, and the bacterial short chain fatty acids (SCFAs) were dose-dependently reduced after the administration of SiO2 and TiO2 NPs. These effects disappeared completely or partly after the recovery period, strengthening the association with dietary NPs. We did not observe atheromatous disease or glucose intolerance after NP exposure. Instead, dose-dependent decreases in the expression of IL-6 in the liver, circulating triglycerides (TG) and urea nitrogen (BUN) were recorded after administration of the NPs. CONCLUSION: We found that long-term oral exposure to dietary NPs at doses relevant for estimated human intakes disrupts the GM composition and function. These modifications did not appear associated with atheromatous or deleterious metabolic outcomes.


Asunto(s)
Exposición Dietética/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Nanopartículas del Metal/química , Administración Oral , Animales , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Ácidos Grasos Volátiles/metabolismo , Interleucina-6/metabolismo , Masculino , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/toxicidad , Ratones Endogámicos C57BL , Dióxido de Silicio/administración & dosificación , Dióxido de Silicio/farmacología , Dióxido de Silicio/toxicidad , Plata/administración & dosificación , Plata/farmacología , Plata/toxicidad , Titanio/administración & dosificación , Titanio/farmacología , Titanio/toxicidad , Triglicéridos/metabolismo
3.
Arch Toxicol ; 95(4): 1251-1266, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33779765

RESUMEN

CONTEXT: The addition of silver (Ag) to food items, and its migration from food packaging and appliances results in a dietary exposure in humans, estimated to 70-90 µg Ag/day. In view of the well-known bactericidal activity of Ag ions, concerns arise about a possible impact of dietary Ag on the gut microbiota (GM), which is a master determinant of human health and diseases. Repeated oral administration of Ag acetate (AgAc) can also cause systemic toxicity in rats with reported NOAELs of 4 mg AgAc/b.w./d for impaired fertility and 0.4 mg AgAc/b.w./d for developmental toxicity. OBJECTIVE: The objective of this study was to investigate whether oral exposure to AgAc can induce GM alterations at doses causing reproductive toxicity in rats. METHODS: Male and female Wistar rats were exposed during 10 weeks to AgAc incorporated into food (0, 0.4, 4 or 40 mg/kg b.w./d), and we analyzed the composition of the GM (α- and ß-diversity). We documented bacterial function by measuring short-chain fatty acid (SCFA) production in cecal content. Ferroxidase activity, a biomarker of systemic Ag toxicity, was measured in serum. RESULTS AND CONCLUSIONS: From 4 mg/kg b.w./d onwards, we recorded systemic toxicity, as indicated by the reduction of serum ferroxidase activity, as well as serum Cu and Se concentrations. This systemic toxic response to AgAc might contribute to explain reprotoxic manifestations. We observed a dose-dependent modification of the GM composition in male rats exposed to AgAc. No impact of AgAc exposure on the production of bacterial SCFA was recorded. The limited GM changes recorded in this study do not appear related to a reprotoxicity outcome.


Asunto(s)
Acetatos/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Reproducción/efectos de los fármacos , Compuestos de Plata/toxicidad , Acetatos/administración & dosificación , Administración Oral , Animales , Ceruloplasmina/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Nivel sin Efectos Adversos Observados , Ratas , Ratas Wistar , Compuestos de Plata/administración & dosificación
4.
Part Fibre Toxicol ; 18(1): 9, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602232

RESUMEN

BACKGROUND: In vitro models are widely used in nanotoxicology. In these assays, a careful documentation of the fraction of nanomaterials that reaches the cells, i.e. the in vitro delivered dose, is a critical element for the interpretation of the data. The in vitro delivered dose can be measured by quantifying the amount of material in contact with the cells, or can be estimated by applying particokinetic models. For carbon nanotubes (CNTs), the determination of the in vitro delivered dose is not evident because their quantification in biological matrices is difficult, and particokinetic models are not adapted to high aspect ratio materials. Here, we applied a rapid and direct approach, based on femtosecond pulsed laser microscopy (FPLM), to assess the in vitro delivered dose of multi-walled CNTs (MWCNTs). METHODS AND RESULTS: We incubated mouse lung fibroblasts (MLg) and differentiated human monocytic cells (THP-1) in 96-well plates for 24 h with a set of different MWCNTs. The cytotoxic response to the MWCNTs was evaluated using the WST-1 assay in both cell lines, and the pro-inflammatory response was determined by measuring the release of IL-1ß by THP-1 cells. Contrasting cell responses were observed across the MWCNTs. The sedimentation rate of the different MWCNTs was assessed by monitoring turbidity decay with time in cell culture medium. These turbidity measurements revealed some differences among the MWCNT samples which, however, did not parallel the contrasting cell responses. FPLM measurements in cell culture wells revealed that the in vitro delivered MWCNT dose did not parallel sedimentation data, and suggested that cultured cells contributed to set up the delivered dose. The FPLM data allowed, for each MWCNT sample, an adjustment of the measured cytotoxicity and IL-1ß responses to the delivered doses. This adjusted in vitro activity led to another toxicity ranking of the MWCNT samples as compared to the unadjusted activities. In macrophages, this adjusted ranking was consistent with existing knowledge on the impact of surface MWCNT functionalization on cytotoxicity, and might better reflect the intrinsic activity of the MWCNT samples. CONCLUSION: The present study further highlights the need to estimate the in vitro delivered dose in cell culture experiments with nanomaterials. The FPLM measurement of the in vitro delivered dose of MWCNTs can enrich experimental results, and may refine our understanding of their interactions with cells.


Asunto(s)
Nanotubos de Carbono , Técnicas de Cultivo de Célula , Macrófagos , Microscopía Confocal , Monocitos
5.
Part Fibre Toxicol ; 18(1): 7, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563307

RESUMEN

BACKGROUND: Ambient air pollution by particulate matters, including diesel exhaust particles (DEP), is a major cause of cardiovascular and metabolic mortality worldwide. The mechanisms by which DEP cause these adverse outcomes are not completely understood. Because the gut microbiota controls cardiovascular and metabolic health, we hypothesized that the fraction of inhaled DEP which reach the gut after mucociliary clearance and swallowing might induce gut dysbiosis and, in turn, contribute to aggravate or induce cardiovascular and metabolic diseases. RESULTS: Female ApoE-/- mice fed a Western diet, and wild-type (C57Bl/6) mice fed standard diet were gavaged with DEP (SRM2975) doses corresponding to mucociliary clearance from inhalation exposure (200 or 1000 ng/day, 3 times a week for 3 months; and 40, 200 or 1000 ng/day, 3 times a week for 6 months, respectively). No mortality, overt systemic or digestive toxicity was observed. A dose-dependent alteration of the gut microbiota was recorded in both strains. In ApoE-/-, ß-diversity was modified by DEP, but no significant modification of the relative abundance of the phyla, families or genera was identified. In C57BL/6 mice, DEP reduced α-diversity (Shannon and Simpson indices), and modified ß-diversity, including a reduction of the Proteobacteria and Patescibacteria phyla, and an increase of the Campylobacterota phylum. In both mouse models, perturbation of the gut microbiota composition was associated with a dose-dependent reduction of bacterial short chain fatty acids (butyrate and propionate) in cecal content. However, DEP ingestion did not aggravate (ApoE-/-), or induce (C57BL/6 mice) atherosclerotic plaques, and no metabolic alteration (glucose tolerance, resistance to insulin, or lipidemia) was recorded. CONCLUSIONS: We show here that oral exposure to DEP, at doses relevant for human health, changes the composition and function of the gut microbiota. These modifications were, however, not translated into ultimate atherosclerotic or metabolic outcomes.


Asunto(s)
Microbioma Gastrointestinal , Administración Oral , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Material Particulado , Emisiones de Vehículos
6.
Part Fibre Toxicol ; 17(1): 60, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33243293

RESUMEN

BACKGROUND: Inhalation of multi-walled carbon nanotubes (MWCNTs) poses a potential risk to human health. In order to safeguard workers and consumers, the toxic properties of MWCNTs need to be identified. Functionalization has been shown to either decrease or increase MWCNT-related pulmonary injury, depending on the type of modification. We, therefore, investigated both acute and chronic pulmonary toxicity of a library of MWCNTs derived from a common pristine parent compound (NC7000). METHODS: MWCNTs were thermally or chemically purified and subsequently surface functionalized by carboxylation or amination. To evaluate pulmonary toxicity, male C57BL6 mice were dosed via oropharyngeal aspiration with either 1.6 or 4 mg/kg of each MWCNT type. Mitsui-7 MWCNT was used as a positive control. Necropsy was performed at days 3 and 60 post-exposure to collect bronchoalveolar lavage fluid (BALF) and lungs. RESULTS: At day 3 all MWCNTs increased the number of neutrophils in BALF. Chemical purification had a greater effect on pro-inflammatory cytokines (IL-1ß, IL-6, CXCL1) in BALF, while thermal purification had a greater effect on pro-fibrotic cytokines (CCL2, OPN, TGF-ß1). At day 60, thermally purified, carboxylated MWCNTs had the strongest effect on lymphocyte numbers in BALF. Thermally purified MWCNTs caused the greatest increase in LDH and total protein in BALF. Furthermore, the thermally purified and carboxyl- or amine-functionalized MWCNTs caused the greatest number of granulomatous lesions in the lungs. The physicochemical characteristics mainly associated with increased toxicity of the thermally purified derivatives were decreased surface defects and decreased amorphous content as indicated by Raman spectroscopy. CONCLUSIONS: These data demonstrate that the purification method is an important determinant of lung toxicity induced by carboxyl- and amine-functionalized MWCNTs.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Pulmón/efectos de los fármacos , Nanotubos de Carbono/toxicidad , Administración por Inhalación , Animales , Líquido del Lavado Bronquioalveolar/química , Citocinas/metabolismo , Exposición por Inhalación , Lesión Pulmonar , Ratones , Ratones Endogámicos C57BL , Factor de Crecimiento Transformador beta1/metabolismo
7.
Part Fibre Toxicol ; 17(1): 16, 2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32450889

RESUMEN

Toxicity testing and regulation of advanced materials at the nanoscale, i.e. nanosafety, is challenged by the growing number of nanomaterials and their property variants requiring assessment for potential human health impacts. The existing animal-reliant toxicity testing tools are onerous in terms of time and resources and are less and less in line with the international effort to reduce animal experiments. Thus, there is a need for faster, cheaper, sensitive and effective animal alternatives that are supported by mechanistic evidence. More importantly, there is an urgency for developing alternative testing strategies that help justify the strategic prioritization of testing or targeting the most apparent adverse outcomes, selection of specific endpoints and assays and identifying nanomaterials of high concern. The Adverse Outcome Pathway (AOP) framework is a systematic process that uses the available mechanistic information concerning a toxicological response and describes causal or mechanistic linkages between a molecular initiating event, a series of intermediate key events and the adverse outcome. The AOP framework provides pragmatic insights to promote the development of alternative testing strategies. This review will detail a brief overview of the AOP framework and its application to nanotoxicology, tools for developing AOPs and the role of toxicogenomics, and summarize various AOPs of relevance to inhalation toxicity of nanomaterials that are currently under various stages of development. The review also presents a network of AOPs derived from connecting all AOPs, which shows that several adverse outcomes induced by nanomaterials originate from a molecular initiating event that describes the interaction of nanomaterials with lung cells and involve similar intermediate key events. Finally, using the example of an established AOP for lung fibrosis, the review will discuss various in vitro tests available for assessing lung fibrosis and how the information can be used to support a tiered testing strategy for lung fibrosis. The AOPs and AOP network enable deeper understanding of mechanisms involved in inhalation toxicity of nanomaterials and provide a strategy for the development of alternative test methods for hazard and risk assessment of nanomaterials.


Asunto(s)
Rutas de Resultados Adversos , Alternativas a las Pruebas en Animales , Nanoestructuras/toxicidad , Proyectos de Investigación , Pruebas de Toxicidad/métodos , Animales , Humanos
8.
Part Fibre Toxicol ; 17(1): 10, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32101144

RESUMEN

BACKGROUND: The terms agglomerates and aggregates are frequently used in the regulatory definition(s) of nanomaterials (NMs) and hence attract attention in view of their potential influence on health effects. However, the influence of nanoparticle (NP) agglomeration and aggregation on toxicity is poorly understood although it is strongly believed that smaller the size of the NPs greater the toxicity. A toxicologically relevant definition of NMs is therefore not yet available, which affects not only the risk assessment process but also hinders the regulation of nano-products. In this study, we assessed the influence of NP agglomeration on their toxicity/biological responses in vitro and in vivo. RESULTS: We tested two TiO2 NPs with different primary sizes (17 and 117 nm) and prepared ad-hoc suspensions composed of small or large agglomerates with similar dispersion medium composition. For in vitro testing, human bronchial epithelial (HBE), colon epithelial (Caco2) and monocytic (THP-1) cell lines were exposed to these suspensions for 24 h and endpoints such as cytotoxicity, total glutathione, epithelial barrier integrity, inflammatory mediators and DNA damage were measured. Large agglomerates of 17 nm TiO2 induced stronger responses than small agglomerates for glutathione depletion, IL-8 and IL-1ß increase, and DNA damage in THP-1, while no effect of agglomeration was observed with 117 nm TiO2. In vivo, C57BL/6JRj mice were exposed via oropharyngeal aspiration or oral gavage to TiO2 suspensions and, after 3 days, biological parameters including cytotoxicity, inflammatory cell recruitment, DNA damage and biopersistence were measured. Mainly, we observed that large agglomerates of 117 nm TiO2 induced higher pulmonary responses in aspirated mice and blood DNA damage in gavaged mice compared to small agglomerates. CONCLUSION: Agglomeration of TiO2 NPs influences their toxicity/biological responses and, large agglomerates do not appear less active than small agglomerates. This study provides a deeper insight on the toxicological relevance of NP agglomerates and contributes to the establishment of a toxicologically relevant definition for NMs.


Asunto(s)
Daño del ADN , Células Epiteliales/efectos de los fármacos , Nanopartículas/toxicidad , Titanio/toxicidad , Administración Oral , Animales , Líquido del Lavado Bronquioalveolar/química , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Exposición por Inhalación/efectos adversos , Ratones Endogámicos C57BL , Nanopartículas/química , Tamaño de la Partícula , Propiedades de Superficie , Células THP-1 , Titanio/química
9.
Part Fibre Toxicol ; 17(1): 6, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31996255

RESUMEN

BACKGROUND: Li-ion batteries (LIB) are used in most portable electronics. Among a wide variety of materials, LiCoO2 (LCO) is one of the most used for the cathode of LIB. LCO particles induce oxidative stress in mouse lungs due to their Co content, and have a strong inflammatory potential. In this study, we assessed the mutagenic potential of LCO particles in lung cells in comparison to another particulate material used in LIB, LTO (Li4Ti5O12), which has a low inflammatory potential compared to LCO particles. RESULTS: We assessed the mutagenic potential of LCO and LTO particles in vitro by performing a cytokinesis-block micronucleus (MN) assay with rat lung epithelial cells (RLE), as well as in vivo in alveolar type II epithelial (AT-II) cells. LCO particles induced MN in vitro at non-cytotoxic concentrations and in vivo at non-inflammatory doses, indicating a primary genotoxic mechanism. LTO particles did not induce MN. Electron paramagnetic resonance and terephthalate assays showed that LCO particles produce hydroxyl radicals (•OH). Catalase inhibits this •OH production. In an alkaline comet assay with the oxidative DNA damage repair enzyme human 8-oxoguanine DNA glycosylase 1, LCO particles induced DNA strand breaks and oxidative lesions. The addition of catalase reduced the frequency of MN induced by LCO particles in vitro. CONCLUSIONS: We report the mutagenic activity of LCO particles used in LIB in vitro and in vivo. Our data support the role of Co(II) ions released from these particles in their primary genotoxic activity which includes the formation of •OH by a Fenton-like reaction, oxidative DNA lesions and strand breaks, thus leading to chromosomal breaks and the formation of MN. Documenting the genotoxic potential of the other LIB particles, especially those containing Co and/or Ni, is therefore needed to guarantee a safe and sustainable development of LIB.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Cobalto/toxicidad , Daño del ADN , Radical Hidroxilo/metabolismo , Micronúcleos con Defecto Cromosómico/inducido químicamente , Óxidos/toxicidad , Material Particulado/toxicidad , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Animales , Líquido del Lavado Bronquioalveolar/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cobalto/química , Suministros de Energía Eléctrica , Femenino , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Óxidos/química , Tamaño de la Partícula , Material Particulado/química , Ratas , Ratas Wistar
10.
Part Fibre Toxicol ; 17(1): 1, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900181

RESUMEN

BACKGROUND: The regulatory definition(s) of nanomaterials (NMs) frequently uses the term 'agglomerates and aggregates' (AA) despite the paucity of evidence that AA are significantly relevant from a nanotoxicological perspective. This knowledge gap greatly affects the safety assessment and regulation of NMs, such as synthetic amorphous silica (SAS). SAS is used in a large panel of industrial applications. They are primarily produced as nano-sized particles (1-100 nm in diameter) and considered safe as they form large aggregates (> 100 nm) during the production process. So far, it is indeed believed that large aggregates represent a weaker hazard compared to their nano counterpart. Thus, we assessed the impact of SAS aggregation on in vitro cytotoxicity/biological activity to address the toxicological relevance of aggregates of different sizes. RESULTS: We used a precipitated SAS dispersed by different methods, generating 4 ad-hoc suspensions with different aggregate size distributions. Their effect on cell metabolic activity, cell viability, epithelial barrier integrity, total glutathione content and, IL-8 and IL-6 secretion were investigated after 24 h exposure in human bronchial epithelial (HBE), colon epithelial (Caco2) and monocytic cells (THP-1). We observed that the de-aggregated suspension (DE-AGGR), predominantly composed of nano-sized aggregates, induced stronger effects in all the cell lines than the aggregated suspension (AGGR). We then compared DE-AGGR with 2 suspensions fractionated from AGGR: the precipitated fraction (PREC) and the supernatant fraction (SuperN). Very large aggregates in PREC were found to be the least cytotoxic/biologically active compared to other suspensions. SuperN, which contains aggregates larger in size (> 100 nm) than in DE-AGGR but smaller than PREC, exhibited similar activity as DE-AGGR. CONCLUSION: Overall, aggregation resulted in reduced toxicological activity of SAS. However, when comparing aggregates of different sizes, it appeared that aggregates > 100 nm were not necessarily less cytotoxic than their nano-sized counterparts. This study suggests that aggregates of SAS are toxicologically relevant for the definition of NMs.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Nanopartículas/toxicidad , Dióxido de Silicio/toxicidad , Células CACO-2 , Técnicas de Cultivo de Célula , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Glutatión/metabolismo , Humanos , Nanopartículas/química , Tamaño de la Partícula , Dióxido de Silicio/química , Propiedades de Superficie , Suspensiones , Células THP-1
11.
Part Fibre Toxicol ; 16(1): 35, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31533843

RESUMEN

BACKGROUND: Li-ion batteries (LIB) are increasingly used worldwide. They are made of low solubility micrometric particles, implying a potential for inhalation toxicity in occupational settings and possibly for consumers. LiCoO2 (LCO), one of the most used cathode material, induces inflammatory and fibrotic lung responses in mice. LCO also stabilizes hypoxia-inducible factor (HIF) -1α, a factor implicated in inflammation, fibrosis and carcinogenicity. Here, we investigated the role of cobalt, nickel and HIF-1α as determinants of toxicity, and evaluated their predictive value for the lung toxicity of LIB particles in in vitro assays. RESULTS: By testing a set of 5 selected LIB particles (LCO, LiNiMnCoO2, LiNiCoAlO2) with different cobalt and nickel contents, we found a positive correlation between their in vivo lung inflammatory activity, and (i) Co and Ni particle content and their bioaccessibility and (ii) the stabilization of HIF-1α in the lung. Inhibition of HIF-1α with chetomin or PX-478 blunted the lung inflammatory response to LCO in mice. In IL-1ß deficient mice, HIF-1α was the upstream signal of the inflammatory lung response to LCO. In vitro, the level of HIF-1α stabilization induced by LIB particles in BEAS-2B cells correlated with the intensity of lung inflammation induced by the same particles in vivo. CONCLUSIONS: We conclude that HIF-1α, stabilized in lung cells by released Co and Ni ions, is a mechanism-based biomarker of lung inflammatory responses induced by LIB particles containing Co/Ni. Documenting the Co/Ni content of LIB particles, their bioaccessibility and their capacity to stabilize HIF-1α in vitro can be used to predict the lung inflammatory potential of LIB particles.


Asunto(s)
Cobalto/toxicidad , Células Epiteliales/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Pulmón/efectos de los fármacos , Óxidos/toxicidad , Neumonía/inducido químicamente , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/inmunología , Técnicas de Cultivo de Célula , Línea Celular , Citocinas/análisis , Relación Dosis-Respuesta a Droga , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Humanos , Exposición por Inhalación , Iones , Pulmón/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Tamaño de la Partícula , Neumonía/inmunología , Neumonía/patología
12.
Arch Toxicol ; 92(5): 1673-1684, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29550861

RESUMEN

Rechargeable Li-ion batteries (LIB) are increasingly produced and used worldwide. LIB electrodes are made of micrometric and low solubility particles, consisting of toxicologically relevant elements. The health hazard of these materials is not known. Here, we investigated the respiratory hazard of three leading LIB components (LiFePO4 or LFP, Li4Ti5O12 or LTO, and LiCoO2 or LCO) and their mechanisms of action. Particles were characterized physico-chemically and elemental bioaccessibility was documented. Lung inflammation and fibrotic responses, as well as particle persistence and ion bioavailability, were assessed in mice after aspiration of LIB particles (0.5 or 2 mg); crystalline silica (2 mg) was used as reference. Acute inflammatory lung responses were recorded with the 3 LIB particles and silica, LCO being the most potent. Inflammation persisted 2 m after LFP, LCO and silica, in association with fibrosis in LCO and silica lungs. LIB particles persisted in the lungs after 2 m. Endogenous iron co-localized with cobalt in LCO lungs, indicating the formation of ferruginous bodies. Fe and Co ions were detected in the broncho-alveolar lavage fluids of LFP and LCO lungs, respectively. Hypoxia-inducible factor (HIF) -1α, a marker of fibrosis and of the biological activity of Co ions, was upregulated in LCO and silica lungs. This study identified, for the first time, the respiratory hazard of LIB particles. LCO was at least as potent as crystalline silica to induce lung inflammation and fibrosis. Iron and cobalt, but not lithium, ions appear to contribute to LFP and LCO toxicity, respectively.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Cobalto/toxicidad , Suministros de Energía Eléctrica , Litio/toxicidad , Óxidos/toxicidad , Neumonía/inducido químicamente , Administración por Inhalación , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/farmacocinética , Animales , Disponibilidad Biológica , Líquido del Lavado Bronquioalveolar/química , Cobalto/química , Cobalto/farmacocinética , Femenino , Fibrosis/inducido químicamente , Fibrosis/patología , Hierro/química , Hierro/farmacocinética , Hierro/toxicidad , Litio/química , Litio/farmacocinética , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Óxidos/química , Óxidos/farmacocinética , Tamaño de la Partícula , Neumonía/patología , Titanio/química , Titanio/farmacocinética , Titanio/toxicidad , Pruebas de Toxicidad
13.
Arch Toxicol ; 91(9): 2967-3010, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28573455

RESUMEN

Large-scale production and use of amorphous silica nanoparticles (SiNPs) have increased the risk of human exposure to SiNPs, while their health effects remain unclear. In this review, scientific papers from 2010 to 2016 were systematically selected and sorted based on in vitro and in vivo studies: to provide an update on SiNPs toxicity and to address the knowledge gaps indicated in the review of Napierska (Part Fibre Toxicol 7:39, 2010). Toxicity of SiNPs in vitro is size, dose, and cell type dependent. SiNPs synthesized by wet route exhibited noticeably different biological effects compared to thermal route-based SiNPs. Amorphous SiNPs (particularly colloidal and stöber) induced toxicity via mechanisms similar to crystalline silica. In vivo, route of administration and physico-chemical properties of SiNPs influences the toxicokinetics. Adverse effects were mainly observed in acutely exposed animals, while no significant signs of toxicity were noted in chronically dosed animals. The correlation between in vitro and in vivo toxicity remains less well established mainly due to improper-unrealistic-dosing both in vitro and in vivo. In conclusion, notwithstanding the multiple studies published in recent years, unambiguous linking of physico-chemical properties of SiNPs types to toxicity, bioavailability, or human health effects is not yet possible.


Asunto(s)
Nanopartículas/toxicidad , Dióxido de Silicio/toxicidad , Animales , Autofagia/efectos de los fármacos , Técnicas de Cultivo de Célula , Daño del ADN/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiopatología , Humanos , Sistema Inmunológico/efectos de los fármacos , Exposición por Inhalación , Pruebas de Mutagenicidad/métodos , Nanopartículas/administración & dosificación , Síndromes de Neurotoxicidad/etiología , Estrés Oxidativo/efectos de los fármacos , Dióxido de Silicio/administración & dosificación , Pruebas de Toxicidad/métodos
14.
Part Fibre Toxicol ; 13(1): 38, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27393559

RESUMEN

BACKGROUND: Humans are increasingly exposed via the diet to Ag nanoparticles (NP) used in the food industry. Because of their anti-bacterial activity, ingested Ag NP might disturb the gut microbiota that is essential for local and systemic homeostasis. We explored here the possible impact of dietary Ag NP on the gut microbiota in mice at doses relevant for currently estimated human intake. METHODS: Mice were orally exposed to food (pellets) supplemented with increasing doses of Ag NP (0, 46, 460 or 4600 ppb) during 28 d. Body weight, systemic inflammation and gut integrity were investigated to determine overall toxicity, and feces DNA collected from the gut were analyzed by Next Generation Sequencing (NGS) to assess the effect of Ag NP on the bacterial population. Ag NP were characterized alone and in the supplemented pellets by scanning transmission electron microscopy (STEM) and energy dispersive X-ray analysis (EDX). RESULTS: No overall toxicity was recorded in mice exposed to Ag NP. Ag NP disturbed bacterial evenness (α-diversity) and populations (ß-diversity) in a dose-dependent manner. Ag NP increased the ratio between Firmicutes (F) and Bacteroidetes (B) phyla. At the family level, Lachnospiraceae and the S24-7 family mainly accounted for the increase in Firmicutes and decrease in Bacteroidetes, respectively. Similar effects were not observed in mice identically exposed to the same batch of Ag NP-supplemented pellets aged during 4 or 8 months and the F/B ratio was less or not modified. Analysis of Ag NP-supplemented pellets showed that freshly prepared pellets released Ag ions faster than aged pellets. STEM-EDX analysis also showed that Ag sulfidation occurred in aged Ag NP-supplemented pellets. CONCLUSIONS: Our data indicate that oral exposure to human relevant doses of Ag NP can induce microbial alterations in the gut. The bacterial disturbances recorded after Ag NP are similar to those reported in metabolic and inflammatory diseases, such as obesity. It also highlights that Ag NP aging in food, and more specifically sulfidation, can reduce the effects of Ag NP on the microbiota by limiting the release of toxic Ag ions.


Asunto(s)
Intestinos/microbiología , Nanopartículas del Metal/administración & dosificación , Microbiota , Plata/química , Animales , Relación Dosis-Respuesta a Droga , Nanopartículas del Metal/química , Ratones , Microscopía Electrónica de Transmisión de Rastreo , Espectrometría por Rayos X
15.
Part Fibre Toxicol ; 13: 11, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26926090

RESUMEN

Several experimental studies have shown that carbon nanotubes (CNT) can induce respiratory effects, including lung fibrosis. The cellular and molecular events through which these effects develop are, however, not clearly elucidated. The purpose of the present review was to analyze the key events involved in the lung fibrotic reaction induced by CNT and to assess their relationships. We thus address current knowledge and gaps with a view to draft an Adverse Outcome Pathway (AOP) concerning the fibrotic potential of CNT.As for many inhaled particles, CNT can indirectly activate fibroblasts through the release of pro-inflammatory (IL-1ß) and pro-fibrotic (PDGF and TGF-ß) mediators by inflammatory cells (macrophages and epithelial cells) via the induction of oxidative stress, inflammasome or NF-kB. We also highlight here direct effects of CNT on fibroblasts, which appear as a new mode of toxicity relatively specific for CNT. Direct effects of CNT on fibroblasts include the induction of fibroblast proliferation, differentiation and collagen production via ERK 1/2 or Smad signaling. We also point out the physico-chemical properties of CNT important for their toxicity and the relationship between in vitro and in vivo effects. This knowledge provides evidence to draft an AOP for the fibrogenic activity of CNT, which allows developing simple in vitro models contributing to predict the CNT effects in lung fibrosis, and risk assessment tools for regulatory decision.


Asunto(s)
Fibroblastos/efectos de los fármacos , Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Nanotubos de Carbono/efectos adversos , Fibrosis Pulmonar/inducido químicamente , Transducción de Señal/efectos de los fármacos , Animales , Comunicación Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Mediadores de Inflamación/metabolismo , Pulmón/metabolismo , Pulmón/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Medición de Riesgo
16.
Nanotoxicology ; 10(4): 488-500, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26444902

RESUMEN

Carbon nanotubes (CNT) have been reported to induce lung inflammation and fibrosis in rodents. We investigated the direct and indirect cellular mechanisms mediating the fibrogenic activity of multi-wall (MW) CNT on fibroblasts. We showed that MWCNT indirectly stimulate lung fibroblast (MLg) differentiation, via epithelial cells and macrophages, whereas no direct effect of MWCNT on fibroblast differentiation or collagen production was detected. MWCNT directly stimulated the proliferation of fibroblasts primed with low concentrations of growth factors, such as PDGF, TGF-ß or EGF. MWCNT prolonged ERK 1/2 phosphorylation induced by low concentrations of PDGF or TGF-ß in fibroblasts. This phenomenon and the proliferative activity of MWCNT on fibroblasts was abrogated by the inhibitors of ERK 1/2, PDGF-, TGF-ß- and EGF-receptors. This activity was also reduced by amiloride, an endocytosis inhibitor. Finally, the lung fibrotic response to several MWCNT samples (different in length and diameter) correlated with their in vitro capacity to stimulate the proliferation of fibroblasts and to prolong ERK 1/2 signaling in these cells. Our findings point to a crosstalk between MWCNT, kinase receptors, ERK 1/2 signaling and endocytosis which stimulates the proliferation of fibroblasts. The mechanisms of action identified in this study contribute to predict the fibrogenic potential of MWCNT.


Asunto(s)
Endocitosis/efectos de los fármacos , Receptores ErbB/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Nanotubos de Carbono/toxicidad , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Fibrosis Pulmonar/patología , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Amilorida/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Colágeno/metabolismo , Receptores ErbB/antagonistas & inhibidores , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Fibroblastos/fisiología , Ratones , Fosforilación , Fibrosis Pulmonar/inducido químicamente , Receptores del Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo
17.
Food Chem Toxicol ; 85: 84-95, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26260750

RESUMEN

Inhalation is the main pathway of ZnO exposure in the occupational environment but only few studies have addressed toxic effects after pulmonary exposure to ZnO nanoparticles (NP). Here we present results from three studies of pulmonary exposure and toxicity of ZnO NP in mice. The studies were prematurely terminated because interim results unexpectedly showed severe pulmonary toxicity. High bolus doses of ZnO NP (25 up to 100 µg; ≥1.4 mg/kg) were clearly associated with a dose dependent mortality in the mice. Lower doses (≥6 µg; ≥0.3 mg/kg) elicited acute toxicity in terms of reduced weight gain, desquamation of epithelial cells with concomitantly increased barrier permeability of the alveolar/blood as well as DNA damage. Oxidative stress was shown via a strong increase in lipid peroxidation and reduced glutathione in the pulmonary tissue. Two months post-exposure revealed no obvious toxicity for 12.5 and 25 µg on a range of parameters. However, mice that survived a high dose (50 µg; 2.7 mg/kg) had an increased pulmonary collagen accumulation (fibrosis) at a similar level as a high bolus dose of crystalline silica. The recovery from these toxicological effects appeared dose-dependent. The results indicate that alveolar deposition of ZnO NP may cause significant adverse health effects.


Asunto(s)
Pulmón/efectos de los fármacos , Nanopartículas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Fibrosis Pulmonar/inducido químicamente , Mucosa Respiratoria/efectos de los fármacos , Óxido de Zinc/toxicidad , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Cruzamientos Genéticos , Daño del ADN , Relación Dosis-Respuesta a Droga , Femenino , Exposición por Inhalación/efectos adversos , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Nanopartículas/administración & dosificación , Nanopartículas/química , Tamaño de la Partícula , Proyectos Piloto , Fibrosis Pulmonar/inmunología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Distribución Aleatoria , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Organismos Libres de Patógenos Específicos , Análisis de Supervivencia , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Subaguda , Aumento de Peso/efectos de los fármacos , Óxido de Zinc/administración & dosificación , Óxido de Zinc/química
18.
Toxicol In Vitro ; 29(4): 722-6, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25735930

RESUMEN

Mineral carbonation can stabilize industrial residues and, in the steel industry, may contribute to simultaneously valorize CO2 emissions and slag. We hypothesized that, by restricting the leaching of metals of toxicological concern such as Cr and V, carbonation can suppress the toxicity of these materials. The cytotoxic activity (WST1 assay) of slag dusts collected from a stainless and a Linz-Donawitz (LD) steel plant, before and after carbonation, was examined in J774 macrophages. The release of Cr, V, Fe, Mn and Ni was measured after incubation in artificial lung fluids mimicking the extracellular and phagolysosomal milieu to which particles are confronted after inhalation. LD slag had the higher Fe, Mn and V content, and was more cytotoxic than stainless steel slag. The cytotoxic activity of LD but not of stainless dusts was reduced after carbonation. The cytotoxic activity of the dusts toward J774 macrophages necessitated a direct contact with the cells and was reduced in the presence of inhibitors of phagocytosis (cytochalasin D) or phagolysosome acidification (bafilomycin), pointing to a key role of metallic constituents released in phagolysosomes. This in vitro study supports a limited reduction of the cytotoxic activity of LD, but not of stainless, steel dusts upon carbonation.


Asunto(s)
Residuos Industriales/análisis , Metalurgia , Acero/toxicidad , Carbono/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Polvo , Humanos , L-Lactato Deshidrogenasa/metabolismo , Lisosomas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Monocitos/efectos de los fármacos
19.
Part Fibre Toxicol ; 11: 67, 2014 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-25497478

RESUMEN

BACKGROUND: Ge-imogolites are short aluminogermanate tubular nanomaterials with attractive prospected industrial applications. In view of their nano-scale dimensions and high aspect ratio, they should be examined for their potential to cause respiratory toxicity. Here, we evaluated the respiratory biopersistence and lung toxicity of 2 samples of nanometer-long Ge-imogolites. METHODS: Rats were intra-tracheally instilled with single wall (SW, 70 nm length) or double wall (DW, 62 nm length) Ge-imogolites (0.02-2 mg/rat), as well as with crocidolite and the hard metal particles WC-Co, as positive controls. The biopersistence of Ge-imogolites and their localization in the lung were assessed by ICP-MS, X-ray fluorescence, absorption spectroscopy and computed micro-tomography. Acute inflammation and genotoxicity (micronuclei in isolated type II pneumocytes) was assessed 3 d post-exposure; chronic inflammation and fibrosis after 2 m. RESULTS: Cytotoxic and inflammatory responses were shown in bronchoalveolar lavage 3 d after instillation with Ge-imogolites. Sixty days after exposure, a persistent dose-dependent inflammation was still observed. Total lung collagen, reflected by hydroxyproline lung content, was increased after SW and DW Ge-imogolites. Histology revealed lung fibre reorganization and accumulation in granulomas with epithelioid cells and foamy macrophages and thickening of the alveolar walls. Overall, the inflammatory and fibrotic responses induced by SW and DW Ge-imogolites were more severe (on a mass dose basis) than those induced by crocidolite. A persistent fraction of Ge-imogolites (15% of initial dose) was mostly detected as intact structures in rat lungs 2 m after instillation and was localized in fibrotic alveolar areas. In vivo induction of micronuclei was significantly increased 3 d after SW and DW Ge-imogolite instillation at non-inflammatory doses, indicating the contribution of primary genotoxicity. CONCLUSIONS: We showed that nm-long Ge-imogolites persist in the lung and promote genotoxicity, sustained inflammation and fibrosis, indicating that short high aspect ratio nanomaterials should not be considered as innocuous materials. Our data also suggest that Ge-imogolite structure and external surface determine their toxic activity.


Asunto(s)
Silicatos de Aluminio/toxicidad , Germanio/toxicidad , Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Neumonía/inducido químicamente , Fibrosis Pulmonar/etiología , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/toxicidad , Silicatos de Aluminio/administración & dosificación , Silicatos de Aluminio/química , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/inmunología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Femenino , Germanio/administración & dosificación , Germanio/química , Pulmón/inmunología , Pulmón/patología , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Micronúcleos con Defecto Cromosómico/inducido químicamente , Nanotubos/química , Nanotubos/toxicidad , Tamaño de la Partícula , Neumonía/inmunología , Neumonía/patología , Ratas Wistar , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología , Absorción a través del Sistema Respiratorio , Distribución Tisular , Pruebas de Toxicidad Aguda , Toxicocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...