Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Med Genet ; 45(8): 525-34, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18456717

RESUMEN

BACKGROUND: The m.3243A>G mutation in the mitochondrial tRNA(Leu(UUR)) gene is an example of a mutation causing a very heterogeneous phenotype. It is the most frequent cause (80%) of the MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes), but it can also lead in addition or separately to type 2 diabetes, deafness, renal tubulopathy and/or cardiomyopathy. METHODS: To identify pathogenic processes induced by this mutation, we compared global gene expression levels of muscle biopsies from affected and unaffected mutation carriers with controls. RESULTS AND CONCLUSIONS: Gene expression changes were relatively subtle. In the asymptomatic group 200 transcripts were upregulated and 12 were downregulated, whereas in the symptomatic group 15 transcripts were upregulated and 52 were downregulated. In the asymptomatic group, oxidative phosphorylation (OXPHOS) complex I and IV genes were induced. Protein turnover and apoptosis were elevated, most likely due to the formation of dysfunctional and reactive oxygen species (ROS) damaged proteins. These processes returned to normal in symptomatic patients. Components of the complement system were upregulated in both groups, but the strongest in the symptomatic group, which might indicate muscle regeneration--most likely, protein damage and OXPHOS dysfunction stimulate repair (protein regeneration) and metabolic adaptation (OXPHOS). In asymptomatic individuals these processes suffice to prevent the occurrence of symptoms. However, in affected individuals the repair process terminates, presumably because of excessive damage, and switches to muscle regeneration, as indicated by a stronger complement activation. This switch leaves increasingly damaged tissue in place and muscle pathology becomes manifest. Therefore, the expression of complement components might be a marker for the severity and progression of MELAS clinical course.


Asunto(s)
Síndrome MELAS/genética , Mutación Puntual , ARN de Transferencia de Leucina/genética , Adolescente , Adulto , Anciano , Apoptosis , Niño , Preescolar , Activación de Complemento , Femenino , Perfilación de la Expresión Génica , Heterocigoto , Humanos , Síndrome MELAS/fisiopatología , Masculino , Persona de Mediana Edad , Músculo Esquelético/fisiopatología , Fosforilación Oxidativa , Proteínas/metabolismo , ARN de Transferencia de Leucina/metabolismo
2.
Genomics ; 91(1): 52-60, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18060737

RESUMEN

Familial hypertrophic cardiomyopathy (FHC) is an autosomal dominant disease characterized by left ventricular hypertrophy (LVH) predominantly affecting the interventricular septum. Cardiac myosin-binding protein C (cMyBP-C) mutations are common causes of FHC. Gene expression profiling was performed in left ventricles of 9-week-old wild-type mice, heterozygous cMyBP-C KO mice displaying asymmetric septal hypertrophy, and homozygous mice developing eccentric LVH. Knocking out one or two cMyBP-C genes leads primarily to gene expression changes indicating an increased energy demand, activation of the JNK and p38 parts of the MAPK pathway and deactivation of the ERK part, and induction of apoptosis. Altered gene expression for processes related to cardiac structure, contractile proteins, and protein turnover was also identified. Many of the changes were more pronounced in the homozygous KO mice. These alterations point to physiological and pathological adaptations in the prehypertrophic heterozygous KO mice and the hypertrophic homozygous mice.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar/metabolismo , Proteínas Portadoras/metabolismo , Trastornos de los Cromosomas/metabolismo , Regulación de la Expresión Génica , Hipertrofia Ventricular Izquierda/metabolismo , Miocardio/metabolismo , Animales , Apoptosis/genética , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/patología , Proteínas Portadoras/genética , Trastornos de los Cromosomas/genética , Trastornos de los Cromosomas/patología , Quinasas MAP Reguladas por Señal Extracelular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Heterocigoto , Homocigoto , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Noqueados , Miocardio/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Tabique Interventricular/metabolismo , Tabique Interventricular/patología , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
Genomics ; 88(4): 480-8, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16781840

RESUMEN

Cardiac hypertrophy is an important risk factor for cardiac morbidity and mortality. To unravel the underlying pathogenic genetic pathways, we hybridized left ventricular RNA from Transverse Aortic Constriction mice at 48 h, 1 week, and 2, 3, and 8 weeks after surgery to microarrays containing a 15K fetal cDNA collection. Key processes involved an early restriction in the expression of metabolic genes, accompanied by increased expression of genes related to growth and reactivation of fetal genes. Most of these genes returned to basal expression levels during the later, compensated hypertrophic phase. Our findings suggest that compensated hypertrophy in these mice is established by rapid adaptation of the heart at the cost of gene expression associated with metabolic activity, with only temporary expression of possible maladaptive processes. Therefore, the transient early changes may reflect a beneficial response to pressure overload, as deterioration of cardiac hemodynamic function or heart failure does not occur.


Asunto(s)
Cardiomegalia/genética , Regulación de la Expresión Génica , Animales , Aorta/cirugía , Cardiomegalia/etiología , Modelos Animales de Enfermedad , Metabolismo Energético/genética , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/genética , Masculino , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Presión Ventricular
4.
Leukemia ; 17(7): 1324-32, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12835720

RESUMEN

Microarrays for gene expression profiling are rapidly becoming important research tools for the identification of novel markers, for example, for novel classification of leukemias and lymphomas. Here, we review the considerations and infrastructure for microarray experiments. These considerations are illustrated via a microarray-based comparison of gene expression profiles of paired diagnosis-relapse samples from patients with precursor-B acute lymphoblastic leukemia (ALL), who relapsed during therapy or after completion of treatment. Initial experiments showed that several seemingly differentially expressed genes were actually derived from contaminating non-leukemic cells, particularly myeloid cells and T-lymphocytes. Therefore, we purified the ALL cells of the diagnosis and relapse samples if their frequency was lower than 95%. Furthermore, we observed in earlier studies that extra RNA amplification leads to skewing of particular gene transcripts. Sufficient (non-amplified) RNA of purified and paired diagnosis-relapse samples was obtained from only seven cases. The gene expression profiles were evaluated with Affymetrix U95A chips containing 12 600 human genes. These diagnosis-relapse comparisons revealed only a small number of genes (n=6) that differed significantly in expression: mostly signaling molecules and transcription factors involved in cell proliferation and cell survival were highly upregulated at relapse, but we did not observe any increase in drug-resistance markers. This finding fits with the observation that tumors with a high proliferation index have a poor prognosis. The genes that changed between diagnosis and relapse are currently not in use as diagnostic or disease progression markers, but represent potential new markers for such applications. Leukemia (2003) 17, 1324-1332. doi:10.1038/sj.leu.2402974


Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Biomarcadores , División Celular/genética , Supervivencia Celular/genética , Niño , Preescolar , Progresión de la Enfermedad , Resistencia a Antineoplásicos/genética , Perfilación de la Expresión Génica/normas , Humanos , Lactante , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidad , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad , Recurrencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA