Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 129
1.
JBMR Plus ; 8(1): ziad004, 2024 Jan.
Article En | MEDLINE | ID: mdl-38690127

Craniofacial and dentoalveolar abnormalities are present in all types of osteogenesis imperfecta (OI). Mouse models of the disorder are critical to understand these abnormalities and underlying OI pathogenesis. Previous studies on severely affected OI mice report a broad spectrum of craniofacial phenotypes, exhibiting some similarities to the human disorder. The Brtl/+ and G610c/+ are moderately severe and mild-type IV OI, respectively. Little is known about the aging effects on the craniofacial bones of these models and their homology to human OI. This study aimed to analyze the Brtl/+ and G610c/+ craniofacial morphometries during aging to establish suitability for further OI craniofacial bone intervention studies. We performed morphological measurements on the micro-CT-scanned heads of 3-wk-old, 3-mo-old, and 6-mo-old female Brtl/+ and G610c/+ mice. We observed that Brtl/+ skulls are shorter in length than WT (P < .05), whereas G610c/+ skulls are similar in length to their WT counterparts. The Brtl/+ mice exhibit alveolar bone with a porotic-like appearance that is not observed in G610c/+. As they age, Brtl/+ mice show severe bone resorption in both the maxilla and mandible (P < .05). By contrast, G610c/+ mice experience mandibular resorption consistently across all ages, but maxillary resorption is only evident at 6 mo (P < .05). Western blot shows high osteoclastic activities in the Brtl/+ maxilla. Both models exhibit delayed pre-functional eruptions of the third molars (P < .05), which are similar to those observed in some bisphosphonate-treated OI subjects. Our study shows that the Brtl/+ and G610c/+ mice display clear features found in type IV OI patients; both show age-related changes in the craniofacial growth phenotype. Therefore, understanding the craniofacial features of these models and how they age will allow us to select the most accurate mouse model, mouse age, and bone structure for the specific craniofacial bone treatment of differing OI groups.

2.
Article En | MEDLINE | ID: mdl-38552313

OBJECTIVES: Systemic sclerosis (SSc) is characterized by multiple clinical manifestations. Vasculopathy is a main disease hallmark and ranges in severity from an exacerbated Raynaud phenomenon to pulmonary arterial hypertension (PAH). The potential involvement of immune system in SSc associated vascular abnormalities is not clear. Here, we set out to study SSc-related immune parameters and determine whether and which peripheral T cell subsets associate with vascular severity in SSc patients. METHODS: Peripheral blood and clinical data were collected from 30 SSc patients, 5 patients with idiopathic pulmonary arterial hypertension (IPAH) and 15 age and sex-matched healthy donors (HD). In this cross-sectional cohort SSc patients with PAH (n = 15) were matched for their age, sex and medication with SSc patients with no signs of PAH (n = 15). Lymphocyte subsets were quantified by multi-colour flow cytometry. RESULTS: SSc patients exhibited elevated percentages of T peripheral helper cells (Tph), CD4+GZMB+ T cells and decreased levels of Th1 cells compared with HD. Increased presence of both CD4+ and CD8+ exhausted-like (CD28-) T cells, characterized by raised cytokine and cytotoxic signature, was also observed in SSc compared with HD blood. Furthermore, IL-4 expressing CD4+CD8+ T cells were significantly increased in SSc peripheral blood. Interestingly, the presence of PAH in SSc was accompanied by a distinct T helper profile, characterized by raised percentages of Th17 and Tph cells. CONCLUSION: SSc patients with severe vasculopathy (presence of PAH) exhibited a distinct T cell profile, suggesting for a potential role of auto-immune inflammation in SSc vascular complications.

3.
Osteoarthr Cartil Open ; 6(2): 100459, 2024 Jun.
Article En | MEDLINE | ID: mdl-38486843

Introduction: Articular cartilage makes smooth movement possible and destruction of this tissue leads to loss of joint function. An important biomolecule that determines this function is the large aggregating proteoglycan of cartilage, aggrecan. Aggrecan has a relatively short half-life in cartilage and therefore continuous production of this molecule is essential. Methods: In this narrative review we discuss what is the role of growth factors in driving the synthesis of aggrecan in articular cartilage. A literature search has been done using the search items; cartilage, aggrecan, explant, Transforming Growth factor-ß (TGF-ß), Insulin-like Growth Factor (IGF), Bone Morphogenetic Protein (BMP) and the generic term "growth factors". Focus has been on studies using healthy cartilage and models of cartilage regeneration have been excluded. Results: In healthy adult articular cartilage IGF is the main factor that drives aggrecan synthesis and maintains adequate levels of production. BMP's and TGF-ß have a very limited role but appear to be more important during chondrogenesis and cartilage development. The major role of TGF-ß is not stimulation of aggrecan synthesis but maintenance of the differentiated articular cartilage chondrocyte phenotype. Conclusion: TGF-ß is a factor that is generally considered as an important factor in stimulating aggrecan synthesis in cartilage but its role in this might be very restrained in healthy, adult articular cartilage.

4.
Article En | MEDLINE | ID: mdl-38216750

OBJECTIVES: Macrophages are key orchestrators of the osteoarthritis (OA)-associated inflammatory response. Macrophage phenotype is dependent on environmental cues like the inflammatory factor S100A8/A9. Here, we investigated how S100A9 exposure during monocyte-to-macrophage differentiation affects macrophage phenotype and function. METHODS: OA synovium cellular composition was determined using flow cytometry and multiplex immunohistochemistry. Healthy donor monocytes were differentiated towards M1- and M2-like macrophages in presence of S100A9. Macrophage markers were measured using flow cytometry and phagocytic activity was determined using pHrodo Red Zymosan A BioParticles. Gene expression was determined using qPCR. Protein secretion was measured using Luminex and ELISA. RESULTS: Macrophages were the dominant leucocyte subpopulation in OA synovium. They mainly presented with a M2-like phenotype, although the majority also expressed M1-like macrophage markers. Long-term exposure to S100A9 during monocyte-to-macrophage differentiation increased M2-like macrophage markers CD163 and CD206 in M1-like and M2-like differentiated cells. In addition, M1-like macrophage markers were increased in M1-like, but decreased in M2-like differentiated macrophages. In agreement with this mixed phenotype, S100A9 stimulation modestly increased expression and secretion of pro-inflammatory markers and catabolic enzymes, but also increased expression and secretion of anti-inflammatory/anabolic markers. In accordance with the upregulation of M2-like macrophage markers, S100A9 increased phagocytic activity. Finally, we indeed observed a strong association between S100A8 and S100A9 expression and the M2-like/M1-like macrophage ratio in end-stage OA synovium. CONCLUSION: Chronic S100A8/A9 exposure during monocyte-to-macrophage differentiation favours differentiation towards a M2-like macrophage phenotype. The properties of these cells could help explain the catabolic/anabolic dualism in established OA joints with low-grade inflammation.

5.
J Orthop Res ; 42(2): 286-295, 2024 02.
Article En | MEDLINE | ID: mdl-37525432

Dysregulation of Wingless and Int-1 (Wnt) signaling has been strongly associated with development and progression of osteoarthritis (OA). Here, we set out to investigate the independent effects of either mechanical stress (MS) or inflammation on Wnt signaling in human neocartilage pellets, and to relate this Wnt signaling to OA pathophysiology. OA synovium-conditioned media (OAS-CM) was collected after incubating synovium from human end-stage OA joints for 24 h in medium. Cytokine levels in the OAS-CM were determined with a multiplex immunoassay (Luminex). Human neocartilage pellets were exposed to 20% MS, 2% OAS-CM or 1 ng/mL Interleukin-1ß (IL-1ß). Effects on expression levels of Wnt signaling members were determined by reverse transcription-quantitative polymerase chain reaction. Additionally, the expression of these members in articular cartilage from human OA joints was analyzed in association with joint space narrowing (JSN) and osteophyte scores. Protein levels of IL-1ß, IL-6, IL-8, IL-10, tumor necrosis factor α, and granulocyte-macrophage colony-stimulating factor positively correlated with each other. MS increased noncanonical WNT5A and FOS expression. In contrast, these genes were downregulated upon stimulation with OAS-CM or IL-1ß. Furthermore, Wnt inhibitors DKK1 and FRZB decreased in response to OAS-CM or IL-1ß exposure. Finally, expression of WNT5A in OA articular cartilage was associated with increased JSN scores, but not osteophyte scores. Our results demonstrate that MS and inflammatory stimuli have opposite effects on canonical and noncanonical Wnt signaling in human neocartilage. Considering the extent to which MS and inflammation contribute to OA in individual patients, we hypothesize that targeting specific Wnt pathways offers a more effective, individualized approach.


Cartilage, Articular , Osteoarthritis , Humans , Chondrocytes/metabolism , Wnt Signaling Pathway , Stress, Mechanical , Inflammation/metabolism , Osteoarthritis/metabolism , Cartilage, Articular/pathology , Interleukin-1beta/metabolism , Cells, Cultured
6.
Rheumatology (Oxford) ; 63(4): 1180-1188, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-37341635

OBJECTIVES: OA is characterized by cartilage degeneration and persistent pain. The majority of OA patients present with synovitis, which is associated with increased cartilage damage. Activated synovial macrophages are key contributors to joint destruction. Therefore, a marker that reflects the activation of these cells could be a valuable tool to characterize the destructive potential of synovitis and benefit monitoring of OA. Here, we aimed to investigate the use of CD64 (FcγRI) as a marker to characterize the damaging potential of synovitis in OA. METHODS: Synovial biopsies were obtained from end-stage OA patients that underwent joint replacement surgery. CD64 protein expression and localization was evaluated using immunohistochemistry and immunofluorescence and quantified using flow cytometry. qPCR was performed to measure the expression of FCGR1 and OA-related genes in synovial biopsies, and in primary chondrocytes and primary fibroblasts stimulated with OA conditioned medium (OAS-CM). RESULTS: Our data exposed a wide range of CD64 expression in OA synovium and showed positive correlations between FCGR1 and S100A8, S100A9, IL1B, IL6 and MMP1/2/3/9/13 expression. CD64 protein correlated with MMP1, MMP3, MMP9, MMP13 and S100A9. Furthermore, we observed that synovial CD64 protein levels in source tissue for OAS-CM significantly associated with the OAS-CM-induced expression of MMP1, MMP3 and especially ADAMTS4 in cultured fibroblasts, but not chondrocytes. CONCLUSION: Together, these results indicate that synovial CD64 expression is associated with the expression of proteolytic enzymes and inflammatory markers related to structural damage in OA. CD64 therefore holds promise as marker to characterize the damaging potential of synovitis.


Osteoarthritis , Synovitis , Humans , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 3 , Osteoarthritis/metabolism , Synovitis/pathology , Calgranulin B/metabolism , Synovial Membrane/metabolism
7.
Rheumatology (Oxford) ; 63(3): 608-618, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-37788083

Local and systemic low-grade inflammation, mainly involving the innate immune system, plays an important role in the development of OA. A receptor playing a key role in initiation of this inflammation is the pattern-recognition receptor Toll-like receptor 4 (TLR4). In the joint, various ligands for TLR4, many of which are damage-associated molecular patterns (DAMPs), are present that can activate TLR4 signalling. This leads to the production of pro-inflammatory and catabolic mediators that cause joint damage. In this narrative review, we will first discuss the involvement of TLR4 ligands and signalling in OA. Furthermore, we will provide an overview of methods for inhibit, TLR4 signalling by RNA interference, neutralizing anti-TLR4 antibodies, small molecules and inhibitors targeting the TLR4 co-receptor MD2. Finally, we will focus on possible applications and challenges of these strategies in the dampening of inflammation in OA.


Osteoarthritis , Toll-Like Receptor 4 , Humans , Inflammation , Signal Transduction , Alarmins
8.
Osteoarthritis Cartilage ; 32(4): 355-364, 2024 Apr.
Article En | MEDLINE | ID: mdl-38142733

Inflammation, both locally in the joint and systemic, is nowadays considered among the mechanisms involved in osteoarthritis (OA). However, this concept has not always been generally accepted. In fact, for long OA has been described as a relatively simple degeneration of articular cartilage as the result of wear and tear only. In this narrative review, we present what our understanding of OA was at the time of the inaugural release of Osteoarthritis and Cartilage about 30 years ago and discuss a set of pivotal papers that changed our view on the role of inflammation in OA development. Furthermore, we briefly discuss the current view on the involvement of inflammation in OA. Next, we use the example of transforming growth factor-ß signaling to show how inflammation might influence processes in the joint in a manner that is beyond the simple interaction of ligand and receptor leading to the release of inflammatory and catabolic mediators. Finally, we discuss our view on what should be done in the future to bring the field forward.


Cartilage, Articular , Osteoarthritis , Humans , Inflammation , Osteoarthritis/metabolism , Cartilage, Articular/metabolism , Transforming Growth Factor beta
9.
Ann Rheum Dis ; 83(4): 488-498, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38123919

OBJECTIVES: Cytotoxic T cells and natural killer (NK) cells are central effector cells in cancer and infections. Their effector response is regulated by activating and inhibitory receptors. The regulation of these cells in systemic autoimmune diseases such as systemic sclerosis (SSc) is less defined. METHODS: We conducted ex vivo analysis of affected skin and blood samples from 4 SSc patient cohorts (a total of 165 SSc vs 80 healthy individuals) using single-cell transcriptomics, flow cytometry and multiplex immunofluorescence staining. We further analysed the effects of costimulatory modulation in functional assays, and in a severely affected SSc patient who was treated on compassionate use with a novel anti-CD3/CD7 immunotoxin treatment. RESULTS: Here, we show that SSc-affected skin contains elevated numbers of proliferating T cells, cytotoxic T cells and NK cells. These cells selectively express the costimulatory molecule CD7 in association with cytotoxic, proinflammatory and profibrotic genes, especially in recent-onset and severe disease. We demonstrate that CD7 regulates the cytolytic activity of T cells and NK cells and that selective depletion of CD7+ cells prevents cytotoxic cell-induced fibroblast contraction and inhibits their profibrotic phenotype. Finally, anti-CD3/CD7 directed depletive treatment eliminated CD7+ skin cells and stabilised disease manifestations in a severely affected SSc patient. CONCLUSION: Together, the findings imply costimulatory molecules as key regulators of cytotoxicity-driven pathology in systemic autoimmune disease, yielding CD7 as a novel target for selective depletion of pathogenic cells.


Scleroderma, Systemic , T-Lymphocytes , Humans , Antigens, CD7/metabolism , Killer Cells, Natural
10.
Arthritis Res Ther ; 25(1): 158, 2023 08 31.
Article En | MEDLINE | ID: mdl-37653557

BACKGROUND: Rheumatoid arthritis (RA) is one of the most prevalent and debilitating joint diseases worldwide. RA is characterized by synovial inflammation (synovitis), which is linked to the development of joint destruction. Magnetic resonance imaging and ultrasonography are widely being used to detect the presence and extent of synovitis. However, these techniques do not reveal the activation status of inflammatory cells such as macrophages that play a crucial role in synovitis and express CD64 (Fc gamma receptor (FcγR)I) which is considered as macrophage activation marker. OBJECTIVES: We aimed to investigate CD64 expression and its correlation with pro-inflammatory cytokines and pro-damaging factors in human-derived RA synovium. Furthermore, we aimed to set up a molecular imaging modality using a radiolabeled CD64-specific antibody as a novel imaging tracer that could be used to determine the extent and phenotype of synovitis using optical and nuclear imaging. METHODS: First, we investigated CD64 expression in synovium of early- and late-stage RA patients and studied its correlation with the expression of pro-inflammatory and tissue-damaging factors. Next, we conjugated an anti-CD64 antibody with IRDye 800CW and diethylenetriamine penta-acetic acid (DTPA; used for 111In labeling) and tested its binding on cultured THP1 cells, ex vivo RA synovium explants and its imaging potential in SCID mice implanted with human RA synovium explants obtained from RA patients who underwent total joint replacement. RESULTS: We showed that CD64 is expressed in synovium of early and late-stage RA patients and that FCGR1A/CD64 expression is strongly correlated with factors known to be involved in RA progression. Combined, this makes CD64 a useful marker for imaging the extent and phenotype of synovitis. We reported higher binding of the [111In]In-DTPA-IRDye 800CW anti-CD64 antibody to in vitro cultured THP1 monocytes and ex vivo RA synovium compared to isotype control. In human RA synovial explants implanted in SCID mice, the ratio of uptake of the antibody in synovium over blood was significantly higher when injected with anti-CD64 compared to isotype and injecting an excess of unlabeled antibody significantly reduced the antibody-binding associated signal, both indicating specific receptor binding. CONCLUSION: Taken together, we successfully developed an optical and nuclear imaging modality to detect CD64 in human RA synovium in vivo.


Arthritis, Rheumatoid , Synovitis , Mice , Animals , Humans , Mice, SCID , Molecular Imaging , Synovitis/diagnostic imaging , Arthritis, Rheumatoid/diagnostic imaging , Biomarkers , Antibodies , Immunoglobulin Isotypes , Pentetic Acid
11.
Osteoarthritis Cartilage ; 31(11): 1481-1490, 2023 11.
Article En | MEDLINE | ID: mdl-37652257

OBJECTIVE: Transforming growth factor-ß (TGF-ß) signaling via SMAD2/3 is crucial to control cartilage homeostasis. However, TGF-ß can also have detrimental effects by signaling via SMAD1/5/9 and thereby contribute to diseases like osteoarthritis (OA). In this study, we aimed to block TGF-ß-induced SMAD1/5/9 signaling in primary human OA chondrocytes, while maintaining functional SMAD2/3 signaling. DESIGN: Human OA chondrocytes were pre-incubated with different concentrations of ALK4/5/7 kinase inhibitor SB-505124 before stimulation with TGF-ß. Changes in SMAD C-terminal phosphorylation were analyzed using Western blot and response genes were measured with quantitative Polymerase Chain Reaction. To further explore the consequences of our ability to separate pathways, we investigated TGF-ß-induced chondrocyte hypertrophy. RESULTS: Pre-incubation with 0.5 µM SB-505124, maintained ±50% of C-terminal SMAD2/3 phosphorylation and induction of JUNB and SERPINE1, but blocked SMAD1/5/9-C phosphorylation and expression of ID1 and ID3. Furthermore, TGF-ß, in levels comparable to those in the synovial fluid of OA patients, resulted in regulation of hypertrophic and dedifferentiation markers in OA chondrocytes; i.e. an increase in COL10, RUNX2, COL1A1, and VEGF and a decrease in ACAN expression. Interestingly, in a subgroup of OA chondrocyte donors, blocking only SMAD1/5/9 caused stronger inhibition on TGF-ß-induced RUNX2 than blocking both SMAD pathways. CONCLUSION: Our findings indicate that using low dose of SB-505124 we maintained functional SMAD2/3 signaling that blocks RUNX2 expression in a subgroup of OA patients. We are the first to show that SMAD2/3 and SMAD1/5/9 pathways can be separately modulated using low and high doses of SB-505124 and thereby split TGF-ß's detrimental from protective function in chondrocytes.


Cartilage, Articular , Osteoarthritis , Humans , Chondrocytes/metabolism , Phosphorylation , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta/metabolism , Core Binding Factor Alpha 1 Subunit , Cartilage, Articular/metabolism , Osteoarthritis/metabolism , Smad2 Protein/metabolism
12.
Cells ; 12(14)2023 07 22.
Article En | MEDLINE | ID: mdl-37508577

Joint pain severity in arthritic diseases differs between sexes and is often more pronounced in women. This disparity is thought to stem from biological mechanisms, particularly innate immunity, yet the understanding of sex-specific differences in arthritic pain remains incomplete. This study aims to investigate these disparities using an innate immunity-driven inflammation model induced by intra-articular injections of Streptococcus Cell Wall fragments to mimic both acute and pre-sensitized joint conditions. Nociceptive behavior was evaluated via gait analysis and static weight-bearing, and inflammation was evaluated via joint histology and the synovial gene expression involved in immune response. Although acute inflammation and pain severity were comparable between sexes, distinct associations between synovial inflammatory gene expression and static nociceptive behavior emerged. These associations delineated sex-specific relationships with pain, highlighting differential gene interactions (Il6 versus Cybb on day 1 and Cyba/Gas6 versus Nos2 on day 8) between sexes. In conclusion, our study found that, despite similar pain severity between sexes, the association of inflammatory synovial genes revealed sex-specific differences in the molecular inflammatory mechanisms underlying pain. These findings suggest a path towards more personalized treatment strategies for pain management in arthritis and other inflammatory joint diseases.


Synovitis , Male , Humans , Mice , Female , Animals , Synovitis/metabolism , Pain , Inflammation/complications , Arthralgia , Immunity, Innate
13.
PeerJ ; 11: e15482, 2023.
Article En | MEDLINE | ID: mdl-37366428

Background: Osteoarthritis (OA) is a progressive joint disease and a major cause of chronic pain in adults. The prevalence of OA is higher in female patients, who tend to have worse OA outcomes, partially due to pain. The association between joint pain and OA pathology is often inconclusive. Preclinical research studies have largely overlooked sex as a potential determinant in joint pain during OA. This study aimed to investigate the role of sex in joint pain in the collagenase-induced OA (CiOA) model and its link with joint pathology. Methods: Multiple aspects of pain were evaluated during identically executed experiments of CiOA in male and female C57BL/6J mice. Cartilage damage, osteophyte formation, synovial thickness, and cellularity were assessed by histology on day 56. The association between pain and pathology was investigated, disaggregated by sex. Results: Differences in pain behavior between sexes were found in the majority of the evaluated pain methods. Females displayed lower weight bearing ability in the affected leg compared to males during the early phase of the disease, however, the pathology at the end stage was comparable between sexes. In the second cohort, males displayed increased mechanical sensitivity in the affected joint compared to females but also showed more cartilage damage at the end stage of the model. Within this cohort, gait analysis showed varied results. Males used the affected paw less often and displayed dynamic weight-bearing compensation in the early phase of the model. These differences were not observed in females. Other evaluated parameters displayed comparable gait behavior between males and females. A detailed analysis of individual mice revealed that seven out of 10 pain measurements highly correlated with OA histopathology in females (Pearson r range: 0.642-0.934), whereas in males this measurement was only two (Pearson r range: 0.645-0.748). Conclusion: Our data show that sex is a determinant in the link between pain-related behavior with OA features. Therefore, to accurately interpret pain data it is crucial to segregate data analysis by sex to draw the correct mechanistic conclusion.


Osteoarthritis , Mice , Male , Female , Animals , Mice, Inbred C57BL , Osteoarthritis/etiology , Pain/etiology , Arthralgia/complications , Gait
14.
Pharmaceuticals (Basel) ; 16(5)2023 May 06.
Article En | MEDLINE | ID: mdl-37242486

Osteoarthritis (OA) is the most prevalent joint disease, and it is characterized by cartilage degeneration, synovitis, and bone sclerosis, resulting in swelling, stiffness, and joint pain. TAM receptors (Tyro3, Axl, and Mer) play an important role in regulating immune responses, clearing apoptotic cells, and promoting tissue repair. Here, we investigated the anti-inflammatory effects of a TAM receptor ligand, i.e., growth arrest-specific gene 6 (Gas6), in synovial fibroblasts from OA patients. TAM receptor expression was determined in synovial tissue. Soluble Axl (sAxl), a decoy receptor for the ligand Gas6, showed concentrations 4.6 times higher than Gas6 in synovial fluid of OA patients. In OA fibroblast-like synoviocytes (OAFLS) exposed to inflammatory stimuli, the levels of sAxl in the supernatants were increased, while the expression of Gas6 was downregulated. In OAFLS under TLR4 stimulation by LPS (Escherichia coli lipopolysaccharide), the addition of exogenous Gas6 by Gas6-conditioned medium (Gas6-CM) reduced pro-inflammatory markers including IL-6, TNF-α, IL-1ß, CCL2, and CXCL8. Moreover, Gas6-CM downregulated IL-6, CCL2, and IL-1ß in LPS-stimulated OA synovial explants. Pharmacological inhibition of TAM receptors by a pan inhibitor (RU301) or by a selective Axl inhibitor (RU428) similarly abrogated Gas6-CM anti-inflammatory effects. Mechanistically, Gas6 effects were dependent on Axl activation, determined by Axl, STAT1, and STAT3 phosphorylation, and by the downstream induction of the suppressors of the cytokine signaling family (SOCS1 and SOCS3). Taken together, our results showed that Gas6 treatment dampens inflammatory markers of OAFLS and synovial explants derived from OA patients associated with SOCS1/3 production.

15.
Cartilage ; 14(1): 67-75, 2023 03.
Article En | MEDLINE | ID: mdl-36546648

OBJECTIVES: Previously, we have shown the involvement of cellular communication network factor 4/Wnt-activated protein Wnt-1-induced signaling protein 1 (CCN4/WISP1) in osteoarthritic (OA) cartilage and its detrimental effects on cartilage. Here, we investigated characteristics of CCN4 in chondrocyte biology by exploring correlations of CCN4 with genes expressed in human OA cartilage with functional follow-up. DESIGN: Spearman correlation analysis was performed for genes correlating with CCN4 using our previously established RNA sequencing dataset of human preserved OA cartilage of the RAAK study, followed by a pathway enrichment analysis for genes with ρ ≥|0.6.| Chondrocyte migration in the absence or presence of CCN4 was determined in a scratch assay, measuring scratch size using a live cell imager for up to 36 h. Changes in expression levels of 12 genes, correlating with CCN4 and involved in migratory processes, were determined with reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS: Correlation of CCN4 with ρ ≥|0.6| was found for 58 genes in preserved human OA cartilage. Pathway analysis revealed "neural crest cell migration" as most significant enriched pathway, containing among others CORO1C, SEMA3C, and SMO. Addition of CCN4 to primary chondrocytes significantly enhance chondrocyte migration as demonstrated by reduced scratch size over the course of 36 h, but at the timepoints measured no effect was observed on mRNA expression of the 12 genes. CONCLUSION: CCN4 increases cell migration of human primary OA chondrocytes. Since WISP1 expression is known to be increased in OA cartilage, this may serve to direct chondrocytes toward cartilage defects and orchestrate repair.


Cartilage, Articular , Chondrocytes , Humans , Chondrocytes/metabolism , Cartilage, Articular/metabolism , Cells, Cultured , Cell Differentiation , Signal Transduction
16.
Methods Mol Biol ; 2598: 375-379, 2023.
Article En | MEDLINE | ID: mdl-36355306

The collagenase-induced experimental osteoarthritis model is in general applied in mice but can also be used in other small species. The model is mainly based on the induction of joint laxity but has also a major inflammatory component. In this chapter, the induction is described by two injections of collagenase at the start of the model. Investigators who will use this model have to have ample experience in intra-articular injection in mice.


Cartilage, Articular , Osteoarthritis , Mice , Animals , Disease Models, Animal , Osteoarthritis/chemically induced , Osteoarthritis/drug therapy , Collagenases/adverse effects , Injections, Intra-Articular
17.
Front Med (Lausanne) ; 10: 1247778, 2023.
Article En | MEDLINE | ID: mdl-38274452

Background: Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic synovial inflammation and cartilage/bone damage. Intercellular messengers such as IL-1 and TNF play a crucial role in the pathophysiology of RA but have limited diagnostic and prognostic values. Therefore, we assessed whether the protein content of the recently discovered extracellular vesicles (EVs), which have gained attention in the pathogenesis of RA, correlates with disease activity parameters in RA patients. Methods: We identified and quantified proteins in plasma-derived EVs (pEVs), isolated by size exclusion chromatography from 17 RA patients by mass spectrophotometry (MS). Quantified protein levels were correlated with laboratory and clinical parameters and the patient's own global assessment of their disease activity (PGA-VAS). In a second MS run, the pEV proteins of nine other RA patients were quantified and compared to those from nine healthy controls (HC). Results: No differences were observed in the concentration, size, and protein content of pEVs from RA patients. Proteomics revealed >95% overlapping proteins in RA-pEVs, compared to HC-pEVs (data are available via ProteomeXchange with identifier PXD046058). Remarkably, in both runs, the level of far more RA-pEV proteins correlated positively to PGA-VAS than to either clinical or laboratory parameters. Interestingly, all observed PGA-VAS positively correlated RA-pEV proteins were associated with the actin-cytoskeleton linker proteins, ezrin, and moesin. Conclusion: Our observation suggests that PGA-VAS (loss of vitality) may have a different underlying pathological mechanism in RA, possibly related to enhanced muscle actin-cytoskeleton activity. Furthermore, our study contributes to the growing awareness and evidence that pEVs contain valuable biomarkers for diseases, with added value for RA patients.

18.
Osteoarthr Cartil Open ; 4(1): 100231, 2022 Mar.
Article En | MEDLINE | ID: mdl-36474468

Objective: Due to the complexity and heterogeneity of osteoarthritis (OA) pathophysiology, studying the interaction between intrinsic molecular changes in chondrocytes after hyper-physiological mechanical stress (MS) and aberrant signalling of OA risk genes remains a challenge. In this study we set out to set up an in vitro 3D neo cartilage pellet model that enables us to explore the responses of OA risk genes to hyper-physiological MS. Design: Human primary chondrocyte neo-cartilage pellets were exposed for 2 days to 2 â€‹× â€‹10 â€‹min of hyper-physiological dynamic MS attained by a 20% strain and a frequency of 5 â€‹Hz. In order to assess cartilage damage, sulphated glycosaminoglycan (sGAG) content in the neo-cartilage was quantified using Alcian blue staining and a dimethyl methylene blue (DMMB) assay, while cleavage of aggrecan was visualized by immunohistochemical staining of aggrecan neo-epitope NITEGE. In addition, changes in expression levels of catabolic, anabolic and hypertrophic genes, and of three OA risk genes; IL11, MGP and TGFA were determined. Results: Hyper-physiological MS induced cartilage damage, as reflected by decreased sGAG content. mRNA levels of aggrecanase ADAMTS5 were increased, while hypertrophic gene RUNX2 was downregulated. MS increased expression of pro-apoptotic marker NOXA. Furthermore, 20% MS led to increased expression of all three OA risk genes IL11, MGP and TGFA. Conclusions: We established a human in vitro model in which hyper-physiological MS induced cartilage damage and catabolic signalling. Next, we demonstrated its usage to study OA risk genes and their response to the mechanical aspects of OA pathophysiology.

19.
Osteoarthr Cartil Open ; 4(1): 100238, 2022 Mar.
Article En | MEDLINE | ID: mdl-36474474

Objective: Transforming growth factor-ß (TGFß) is a pleiotropic cytokine that is central in the regulation of joint health and disease. Inhibition of TGFß activity/signaling in experimental osteoarthritis (OA) has been performed to modulate OA severity and progression. In this narrative review we discuss the potential reasons for the variable results of TGFß inhibition in these models. Design: A literature study was performed using the search terms; experimental osteoarthritis and TGFß. Papers were selected that describe the effect TGFß activity/signaling inhibition on experimental OA. Based on the selected papers a narrative review has been written about the potential therapeutic role of TGFß inhibition in OA and potential causes for its variable effects are discussed. Results: Inhibition of TGFß activity in experimental models of OA does not result in either straightforward protection or deleterious effects. More than half of the studies (13/19), but not all, report that inhibition of TGFß in experimental OA reduces OA severity. This is in contrast with the protective role of TGFß in healthy joints. Conclusions: The effect of TGFß inhibition on joint damage in experimental OA is variable. Most likely this is a consequence of the changing function of TGFß in normal and OA joints. As a result, the overall outcome of TGFß modulation in OA will be unpredictable. To develop OA therapies based on modulation of TGFß activity specific protective and damaging signaling routes should be identified and tools developed to block the damaging ones.

20.
Front Med (Lausanne) ; 9: 973870, 2022.
Article En | MEDLINE | ID: mdl-36072956

Knee injuries such as anterior cruciate ligament ruptures and meniscal injury are common and are most frequently sustained by young and active individuals. Knee injuries will lead to post-traumatic osteoarthritis (PTOA) in 25-50% of patients. Mechanical processes where historically believed to cause cartilage breakdown in PTOA patients. But there is increasing evidence suggesting a key role for inflammation in PTOA development. Inflammation in PTOA might be aggravated by hemarthrosis which frequently occurs in injured knees. Whereas mechanical symptoms (joint instability and locking of the knee) can be successfully treated by surgery, there still is an unmet need for anti-inflammatory therapies that prevent PTOA progression. In order to develop anti-inflammatory therapies for PTOA, more knowledge about the exact pathophysiological mechanisms and exact course of post-traumatic inflammation is needed to determine possible targets and timing of future therapies.

...