Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 61
1.
J Nephrol ; 2024 May 29.
Article En | MEDLINE | ID: mdl-38809363

BACKGROUND AND HYPOTHESIS: Kidney grafts from donors who died of stroke and related traits have worse outcomes relative to grafts from both living donors and those who died of other causes. We hypothesise that deceased donors, particularly those who died of stroke, have elevated polygenic burden for cerebrovascular traits. We further hypothesise that this donor polygenic burden is associated with inferior graft outcomes in the recipient. METHODS: Using a dataset of 6666 deceased and living kidney donors from seven different European ancestry transplant cohorts, we investigated the role of polygenic burden for cerebrovascular traits (hypertension, stroke, and intracranial aneurysm (IA)) on donor age of death and recipient graft outcomes. RESULTS: We found that kidney donors who died of stroke had elevated intracranial aneurysm and hypertension polygenic risk scores, compared to healthy controls and living donors. This burden was associated with age of death among donors who died of stroke. Increased donor polygenic risk for hypertension was associated with reduced long term graft survival (HR: 1.44, 95% CI [1.07, 1.93]) and increased burden for hypertension, and intracranial aneurysm was associated with reduced recipient estimated glomerular filtration rate (eGFR) at 1 year. CONCLUSIONS: Collectively, the results presented here demonstrate the impact of inherited factors associated with donors' death on long-term graft function.

2.
medRxiv ; 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38699368

Background: Low-grade systemic inflammation is implicated in the pathogenesis of various neuropsychiatric conditions affecting mood and cognition. While much of the evidence concerns depression, large-scale population studies of anxiety, affect, and cognitive function are scarce. Importantly, causality remains unclear. We used complementary non-genetic, genetic risk score (GRS), and Mendelian randomization (MR) analyses to examine whether inflammatory markers are associated with affect, depressive and anxiety disorders, and cognitive performance in the Lifelines Cohort; and whether associations are likely to be causal. Methods: Using data from up to 55,098 (59% female) individuals from the Dutch Lifelines cohort, we tested the cross-sectional and longitudinal associations of C-reactive protein (CRP) with (i) depressive and anxiety disorders; (ii) positive and negative affect scores, and (iii) five cognitive measures assessing attention, psychomotor speed, episodic memory, and executive functioning (figural fluency and working memory). Additionally, we examined the association between inflammatory marker GRSs (CRP, interleukin-6 [IL-6], IL-6 receptor [IL-6R and soluble IL-6R (sIL-6R)], glycoprotein acetyls [GlycA]) on these same outcomes (Nmax=57,946), followed by MR analysis examining evidence of causality of CRP on outcomes (Nmax=23,268). In genetic analyses, all GRSs and outcomes were z-transformed. Results: In non-genetic analyses, higher CRP was associated with diagnosis of any depressive disorder, lower positive and higher negative affect scores, and worse performance on tests of figural fluency, attention, and psychomotor speed after adjusting for potential confounders, although the magnitude of these associations was small. In genetic analyses, CRPGRS was associated with any anxiety disorder (ß=0.002, p=0.037, N=57,047) whereas GlycAGRS was associated with major depressive disorder (ß=0.001, p=0.036; N=57,047). Both CRPGRS (ß=0.006, p=0.035, N=57,946) and GlycAGRS (ß=0.006, p=0.049; N=57,946) were associated with higher negative affect score. Inflammatory marker GRSs were not associated with cognitive performance, except sIL-6RGRS which was associated with poorer memory performance (ß=-0.009, p=0.018, N=36,783). Further examination of the CRP-anxiety association using MR provided some weak evidence of causality (ß=0.12; p=0.054). Conclusions: Genetic and non-genetic analyses provide consistent evidence for an association between CRP and negative affect. Genetic analyses suggest that IL-6 signaling could be relevant for memory, and that the association between CRP and anxiety disorders could be causal. These results suggest that dysregulated immune physiology may impact a broad range of trans-diagnostic affective symptoms. However, given the small effect sizes and multiple tests conducted, future studies are required to investigate whether effects are moderated by sub-groups and whether these findings replicate in other cohorts.

3.
Pharmaceutics ; 16(4)2024 Mar 30.
Article En | MEDLINE | ID: mdl-38675137

Vesicular hand eczema (VHE), a clinical subtype of hand eczema (HE), showed limited responsiveness to alitretinoin, the only approved systemic treatment for severe chronic HE. This emphasizes the need for alternative treatment approaches. Therefore, our study aimed to identify drug repurposing opportunities for VHE using transcriptomics and genomics data. We constructed a gene network by combining 52 differentially expressed genes (DEGs) from a VHE transcriptomics study with 3 quantitative trait locus (QTL) genes associated with HE. Through network analysis, clustering, and functional enrichment analyses, we investigated the underlying biological mechanisms of this network. Next, we leveraged drug-gene interactions and retrieved pharmaco-transcriptomics data from the DrugBank database to identify drug repurposing opportunities for (V)HE. We developed a drug ranking system, primarily based on efficacy, safety, and practical and pricing factors, to select the most promising drug repurposing candidates. Our results revealed that the (V)HE network comprised 78 genes that yielded several biological pathways underlying the disease. The drug-gene interaction search together with pharmaco-transcriptomics lookups revealed 123 unique drug repurposing opportunities. Based on our drug ranking system, our study identified the most promising drug repurposing opportunities (e.g., vitamin D analogues, retinoids, and immunomodulating drugs) that might be effective in treating (V)HE.

4.
medRxiv ; 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38496537

Although both short and long sleep duration are associated with elevated hypertension risk, our understanding of their interplay with biological pathways governing blood pressure remains limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and pulse pressure) in 811,405 individuals from diverse population groups. We discover 22 novel gene-sleep duration interaction loci for blood pressure, mapped to genes involved in neurological, thyroidal, bone metabolism, and hematopoietic pathways. Non-overlap between short sleep (12) and long sleep (10) interactions underscores the plausibility of distinct influences of both sleep duration extremes in cardiovascular health. With several of our loci reflecting specificity towards population background or sex, our discovery sheds light on the importance of embracing granularity when addressing heterogeneity entangled in gene-environment interactions, and in therapeutic design approaches for blood pressure management.

5.
Am J Hum Genet ; 109(9): 1638-1652, 2022 09 01.
Article En | MEDLINE | ID: mdl-36055212

Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) are currently under clinical development for treating anemia in chronic kidney disease (CKD), but it is important to monitor their cardiovascular safety. Genetic variants can be used as predictors to help inform the potential risk of adverse effects associated with drug treatments. We therefore aimed to use human genetics to help assess the risk of adverse cardiovascular events associated with therapeutically altered EPO levels to help inform clinical trials studying the safety of HIF-PHIs. By performing a genome-wide association meta-analysis of EPO (n = 6,127), we identified a cis-EPO variant (rs1617640) lying in the EPO promoter region. We validated this variant as most likely causal in controlling EPO levels by using genetic and functional approaches, including single-base gene editing. Using this variant as a partial predictor for therapeutic modulation of EPO and large genome-wide association data in Mendelian randomization tests, we found no evidence (at p < 0.05) that genetically predicted long-term rises in endogenous EPO, equivalent to a 2.2-unit increase, increased risk of coronary artery disease (CAD, OR [95% CI] = 1.01 [0.93, 1.07]), myocardial infarction (MI, OR [95% CI] = 0.99 [0.87, 1.15]), or stroke (OR [95% CI] = 0.97 [0.87, 1.07]). We could exclude increased odds of 1.15 for cardiovascular disease for a 2.2-unit EPO increase. A combination of genetic and functional studies provides a powerful approach to investigate the potential therapeutic profile of EPO-increasing therapies for treating anemia in CKD.


Anemia , Coronary Artery Disease , Myocardial Infarction , Renal Insufficiency, Chronic , Anemia/drug therapy , Anemia/genetics , Coronary Artery Disease/genetics , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , Myocardial Infarction/genetics , Renal Insufficiency, Chronic/genetics
6.
PLoS One ; 17(8): e0273116, 2022.
Article En | MEDLINE | ID: mdl-35994476

Substantial genetic correlations have been reported across psychiatric disorders and numerous cross-disorder genetic variants have been detected. To identify the genetic variants underlying general psychopathology in childhood, we performed a genome-wide association study using a total psychiatric problem score. We analyzed 6,844,199 common SNPs in 38,418 school-aged children from 20 population-based cohorts participating in the EAGLE consortium. The SNP heritability of total psychiatric problems was 5.4% (SE = 0.01) and two loci reached genome-wide significance: rs10767094 and rs202005905. We also observed an association of SBF2, a gene associated with neuroticism in previous GWAS, with total psychiatric problems. The genetic effects underlying the total score were shared with common psychiatric disorders only (attention-deficit/hyperactivity disorder, anxiety, depression, insomnia) (rG > 0.49), but not with autism or the less common adult disorders (schizophrenia, bipolar disorder, or eating disorders) (rG < 0.01). Importantly, the total psychiatric problem score also showed at least a moderate genetic correlation with intelligence, educational attainment, wellbeing, smoking, and body fat (rG > 0.29). The results suggest that many common genetic variants are associated with childhood psychiatric symptoms and related phenotypes in general instead of with specific symptoms. Further research is needed to establish causality and pleiotropic mechanisms between related traits.


Attention Deficit Disorder with Hyperactivity , Bipolar Disorder , Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/psychology , Bipolar Disorder/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Humans , Polymorphism, Single Nucleotide
7.
Commun Biol ; 5(1): 580, 2022 06 13.
Article En | MEDLINE | ID: mdl-35697829

Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include genetics and diabetes mellitus (DM), but little is known about their interaction. We conducted genome-wide association meta-analyses for estimated GFR based on serum creatinine (eGFR), separately for individuals with or without DM (nDM = 178,691, nnoDM = 1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease. Gene prioritization highlighted 18 genes that may inform reno-protective drug development. We highlight the existence of DM-only and noDM-only effects, which can inform about the target group, if respective genes are advanced as drug targets. Largely shared effects suggest that most drug interventions to alter eGFR should be effective in DM and noDM.


Diabetes Mellitus , Diabetic Nephropathies , Creatinine , Diabetic Nephropathies/genetics , Genome-Wide Association Study , Glomerular Filtration Rate/genetics , Humans , Kidney
8.
HGG Adv ; 2(1)2021 Jan 14.
Article En | MEDLINE | ID: mdl-34734193

Psychological and social factors are known to influence blood pressure (BP) and risk of hypertension and associated cardiovascular diseases. To identify novel BP loci, we carried out genome-wide association meta-analyses of systolic, diastolic, pulse, and mean arterial BP taking into account the interaction effects of genetic variants with three psychosocial factors: depressive symptoms, anxiety symptoms, and social support. Analyses were performed using a two-stage design in a sample of up to 128,894 adults from 5 ancestry groups. In the combined meta-analyses of Stages 1 and 2, we identified 59 loci (p value <5e-8), including nine novel BP loci. The novel associations were observed mostly with pulse pressure, with fewer observed with mean arterial pressure. Five novel loci were identified in African ancestry, and all but one showed patterns of interaction with at least one psychosocial factor. Functional annotation of the novel loci supports a major role for genes implicated in the immune response (PLCL2), synaptic function and neurotransmission (LIN7A, PFIA2), as well as genes previously implicated in neuropsychiatric or stress-related disorders (FSTL5, CHODL). These findings underscore the importance of considering psychological and social factors in gene discovery for BP, especially in non-European populations.

9.
Genes (Basel) ; 12(8)2021 07 29.
Article En | MEDLINE | ID: mdl-34440348

SGLT2 inhibitors (SGLT2i) block renal glucose reabsorption. Due to the unexpected beneficial observations in type 2 diabetic patients potentially related to increased natriuresis, SGLT2i are also studied for heart failure treatment. This study aimed to identify genetic variants mimicking SGLT2i to further our understanding of the potential underlying biological mechanisms. Using the UK Biobank resource, we identified 264 SNPs located in the SLC5A2 gene or within 25kb of the 5' and 3' flanking regions, of which 91 had minor allele frequencies >1%. Twenty-seven SNPs were associated with glycated hemoglobin (HbA1c) after Bonferroni correction in participants without diabetes, while none of the SNPs were associated with sodium excretion. We investigated whether these variants had a directionally consistent effect on sodium excretion, HbA1c levels, and SLC5A2 expression. None of the variants met these criteria. Likewise, we identified no common missense variants, and although four SNPs could be defined as 5' or 3' prime untranslated region variants of which rs45612043 was predicted to be deleterious, these SNPs were not annotated to SLC5A2. In conclusion, no genetic variant was found mimicking SGLT2i based on their location near SLC5A2 and their association with sodium excretion or HbA1c and SLC5A2 expression or function.


Genetic Variation , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Adult , Female , Glycated Hemoglobin/metabolism , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Quantitative Trait Loci
10.
Nutr J ; 20(1): 71, 2021 07 27.
Article En | MEDLINE | ID: mdl-34315477

CONTEXT: Multiple observational studies have reported an inverse relationship between 25-hydroxyvitamin D concentrations (25(OH)D) and type 2 diabetes (T2D). However, the results of short- and long-term interventional trials concerning the relationship between 25(OH)D and T2D risk have been inconsistent. OBJECTIVES AND METHODS: To evaluate the causal role of reduced blood 25(OH)D in T2D, here we have performed a bidirectional Mendelian randomization study using 59,890 individuals (5,862 T2D cases and 54,028 controls) from European and Asian Indian ancestries. We used six known SNPs, including three T2D SNPs and three vitamin D pathway SNPs, as a genetic instrument to evaluate the causality and direction of the association between T2D and circulating 25(OH)D concentration. RESULTS: Results of the combined meta-analysis of eight participating studies showed that a composite score of three T2D SNPs would significantly increase T2D risk by an odds ratio (OR) of 1.24, p = 1.82 × 10-32; Z score 11.86, which, however, had no significant association with 25(OH)D status (Beta -0.02nmol/L ± SE 0.01nmol/L; p = 0.83; Z score -0.21). Likewise, the genetically instrumented composite score of 25(OH)D lowering alleles significantly decreased 25(OH)D concentrations (-2.1nmol/L ± SE 0.1nmol/L, p = 7.92 × 10-78; Z score -18.68) but was not associated with increased risk for T2D (OR 1.00, p = 0.12; Z score 1.54). However, using 25(OH)D synthesis SNP (DHCR7; rs12785878) as an individual genetic instrument, a per allele reduction of 25(OH)D concentration (-4.2nmol/L ± SE 0.3nmol/L) was predicted to increase T2D risk by 5%, p = 0.004; Z score 2.84. This effect, however, was not seen in other 25(OH)D SNPs (GC rs2282679, CYP2R1 rs12794714) when used as an individual instrument. CONCLUSION: Our new data on this bidirectional Mendelian randomization study suggests that genetically instrumented T2D risk does not cause changes in 25(OH)D levels. However, genetically regulated 25(OH)D deficiency due to vitamin D synthesis gene (DHCR7) may influence the risk of T2D.


Diabetes Mellitus, Type 2 , Vitamin D Deficiency , Asian People/genetics , Diabetes Mellitus, Type 2/genetics , Humans , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Vitamin D , Vitamin D Deficiency/genetics
11.
Nat Commun ; 12(1): 2579, 2021 05 10.
Article En | MEDLINE | ID: mdl-33972514

Serum concentration of hepatic enzymes are linked to liver dysfunction, metabolic and cardiovascular diseases. We perform genetic analysis on serum levels of alanine transaminase (ALT), alkaline phosphatase (ALP) and gamma-glutamyl transferase (GGT) using data on 437,438 UK Biobank participants. Replication in 315,572 individuals from European descent from the Million Veteran Program, Rotterdam Study and Lifeline study confirms 517 liver enzyme SNPs. Genetic risk score analysis using the identified SNPs is strongly associated with serum activity of liver enzymes in two independent European descent studies (The Airwave Health Monitoring study and the Northern Finland Birth Cohort 1966). Gene-set enrichment analysis using the identified SNPs highlights involvement in liver development and function, lipid metabolism, insulin resistance, and vascular formation. Mendelian randomization analysis shows association of liver enzyme variants with coronary heart disease and ischemic stroke. Genetic risk score for elevated serum activity of liver enzymes is associated with higher fat percentage of body, trunk, and liver and body mass index. Our study highlights the role of molecular pathways regulated by the liver in metabolic disorders and cardiovascular disease.


Alanine Transaminase/genetics , Alkaline Phosphatase/genetics , Cardiovascular Diseases/genetics , Liver/enzymology , Metabolic Diseases/genetics , gamma-Glutamyltransferase/genetics , Aged , Alanine Transaminase/blood , Alkaline Phosphatase/blood , Cardiovascular Diseases/enzymology , Cohort Studies , Databases, Genetic , Female , Gene Expression Regulation, Enzymologic/genetics , Genetic Predisposition to Disease , Genetic Testing , Genome-Wide Association Study , Humans , Insulin Resistance/genetics , Lipid Metabolism/genetics , Liver/metabolism , Male , Mendelian Randomization Analysis , Metabolic Diseases/enzymology , Middle Aged , Polymorphism, Single Nucleotide , Risk Factors , White People , gamma-Glutamyltransferase/blood
12.
Mol Psychiatry ; 26(11): 6293-6304, 2021 11.
Article En | MEDLINE | ID: mdl-33859359

Long and short sleep duration are associated with elevated blood pressure (BP), possibly through effects on molecular pathways that influence neuroendocrine and vascular systems. To gain new insights into the genetic basis of sleep-related BP variation, we performed genome-wide gene by short or long sleep duration interaction analyses on four BP traits (systolic BP, diastolic BP, mean arterial pressure, and pulse pressure) across five ancestry groups in two stages using 2 degree of freedom (df) joint test followed by 1df test of interaction effects. Primary multi-ancestry analysis in 62,969 individuals in stage 1 identified three novel gene by sleep interactions that were replicated in an additional 59,296 individuals in stage 2 (stage 1 + 2 Pjoint < 5 × 10-8), including rs7955964 (FIGNL2/ANKRD33) that increases BP among long sleepers, and rs73493041 (SNORA26/C9orf170) and rs10406644 (KCTD15/LSM14A) that increase BP among short sleepers (Pint < 5 × 10-8). Secondary ancestry-specific analysis identified another novel gene by long sleep interaction at rs111887471 (TRPC3/KIAA1109) in individuals of African ancestry (Pint = 2 × 10-6). Combined stage 1 and 2 analyses additionally identified significant gene by long sleep interactions at 10 loci including MKLN1 and RGL3/ELAVL3 previously associated with BP, and significant gene by short sleep interactions at 10 loci including C2orf43 previously associated with BP (Pint < 10-3). 2df test also identified novel loci for BP after modeling sleep that has known functions in sleep-wake regulation, nervous and cardiometabolic systems. This study indicates that sleep and primary mechanisms regulating BP may interact to elevate BP level, suggesting novel insights into sleep-related BP regulation.


Genome-Wide Association Study , Hypertension , Blood Pressure/genetics , Genetic Loci/genetics , Humans , Hypertension/genetics , Polymorphism, Single Nucleotide/genetics , Sleep/genetics
13.
Bioinformatics ; 37(1): 129-130, 2021 Apr 09.
Article En | MEDLINE | ID: mdl-33416854

SUMMARY: Quality control (QC) of genome wide association study (GWAS) result files has become increasingly difficult due to advances in genomic technology. The main challenges include continuous increases in the number of polymorphic genetic variants contained in recent GWASs and reference panels, the rising number of cohorts participating in a GWAS consortium, and inclusion of new variant types. Here, we present GWASinspector, a flexible R package for comprehensive QC of GWAS results. This package is compatible with recent imputation reference panels, handles insertion/deletion and multi-allelic variants, provides extensive QC reports and efficiently processes big data files. Reference panels covering three human genome builds (NCBI36, GRCh37 and GRCh38) are available. GWASinspector has a user friendly design and allows easy set-up of the QC pipeline through a configuration file. In addition to checking and reporting on individual files, it can be used in preparation of a meta-analysis by testing for systemic differences between studies and generating cleaned, harmonized GWAS files. Comparison with existing GWAS QC tools shows that the main advantages of GWASinspector are its ability to more effectively deal with insertion/deletion and multi-allelic variants and its relatively low memory use. AVAILABILITY AND IMPLEMENTATION: Our package is available at The Comprehensive R Archive Network (CRAN): https://CRAN.R-project.org/package=GWASinspector. Reference datasets and a detailed tutorial can be found at the package website at http://gwasinspector.com/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

14.
Mol Psychiatry ; 26(6): 2056-2069, 2021 06.
Article En | MEDLINE | ID: mdl-32393786

We conducted genome-wide association studies (GWAS) of relative intake from the macronutrients fat, protein, carbohydrates, and sugar in over 235,000 individuals of European ancestries. We identified 21 unique, approximately independent lead SNPs. Fourteen lead SNPs are uniquely associated with one macronutrient at genome-wide significance (P < 5 × 10-8), while five of the 21 lead SNPs reach suggestive significance (P < 1 × 10-5) for at least one other macronutrient. While the phenotypes are genetically correlated, each phenotype carries a partially unique genetic architecture. Relative protein intake exhibits the strongest relationships with poor health, including positive genetic associations with obesity, type 2 diabetes, and heart disease (rg ≈ 0.15-0.5). In contrast, relative carbohydrate and sugar intake have negative genetic correlations with waist circumference, waist-hip ratio, and neighborhood deprivation (|rg| ≈ 0.1-0.3) and positive genetic correlations with physical activity (rg ≈ 0.1 and 0.2). Relative fat intake has no consistent pattern of genetic correlations with poor health but has a negative genetic correlation with educational attainment (rg ≈-0.1). Although our analyses do not allow us to draw causal conclusions, we find no evidence of negative health consequences associated with relative carbohydrate, sugar, or fat intake. However, our results are consistent with the hypothesis that relative protein intake plays a role in the etiology of metabolic dysfunction.


Diabetes Mellitus, Type 2 , Genome-Wide Association Study , Body Mass Index , Diabetes Mellitus, Type 2/genetics , Diet , Genomics , Humans , Life Style
15.
Front Cardiovasc Med ; 8: 809717, 2021.
Article En | MEDLINE | ID: mdl-35097025

BACKGROUND: Serum calciprotein particle maturation time (T50), a measure of vascular calcification propensity, is associated with cardiovascular morbidity and mortality. We aimed to identify genetic loci associated with serum T50 and study their association with cardiovascular disease and mortality. METHODS: We performed a genome-wide association study of serum T50 in 2,739 individuals of European descent participating in the Prevention of REnal and Vascular ENd-stage Disease (PREVEND) study, followed by a two-sample Mendelian randomization (MR) study to examine causal effects of T50 on cardiovascular outcomes. Finally, we examined associations between T50 loci and cardiovascular outcomes in 8,566 community-dwelling participants in the Rotterdam study. RESULTS: We identified three independent genome-wide significant single nucleotide polymorphism (SNPs) in the AHSG gene encoding fetuin-A: rs4917 (p = 1.72 × 10-101), rs2077119 (p = 3.34 × 10-18), and rs9870756 (p = 3.10 × 10-8), together explaining 18.3% of variation in serum T50. MR did not demonstrate a causal effect of T50 on cardiovascular outcomes in the general population. Patient-level analyses revealed that the minor allele of rs9870756, which explained 9.1% of variation in T50, was associated with a primary composite endpoint of all-cause mortality or cardiovascular disease [odds ratio (95% CI) 1.14 (1.01-1.28)] and all-cause mortality alone [1.14 (1.00-1.31)]. The other variants were not associated with clinical outcomes. In patients with type 2 diabetes or chronic kidney disease, the association between rs9870756 and the primary composite endpoint was stronger [OR 1.40 (1.06-1.84), relative excess risk due to interaction 0.54 (0.01-1.08)]. CONCLUSIONS: We identified three SNPs in the AHSG gene that explained 18.3% of variability in serum T50 levels. Only one SNP was associated with cardiovascular outcomes, particularly in individuals with type 2 diabetes or chronic kidney disease.

16.
Am J Epidemiol ; 190(5): 864-874, 2021 05 04.
Article En | MEDLINE | ID: mdl-33089864

Both genetic predisposition and low educational attainment (EA) are associated with higher risk of chronic kidney disease. We examined the interaction of EA and genetic risk in kidney function outcomes. We included 3,597 participants from the Prevention of Renal and Vascular End-Stage Disease Cohort Study, a longitudinal study in a community-based sample from Groningen, the Netherlands (median follow-up, 11 years; 1997-2012). Kidney function was approximated by obtaining estimated glomerular filtration rate (eGFR) from serum creatinine and cystatin C. Individual longitudinal linear eGFR trajectories were derived from linear mixed models. Genotype data on 63 single-nucleotide polymorphisms, with known associations with eGFR, were used to calculate an allele-weighted genetic score (WGS). EA was categorized into high, medium, and low. In ordinary least squares analysis, higher WGS and lower EA showed additive effects on reduced baseline eGFR; the interaction term was nonsignificant. In analysis of eGFR decline, the significant interaction term suggested amplification of genetic risk by low EA. Adjustment for known renal risk factors did not affect our results. This study presents the first evidence of gene-environment interaction between EA and a WGS for eGFR decline and provides population-level insights into the mechanisms underlying socioeconomic disparities in chronic kidney disease.


Creatinine/blood , Educational Status , Genetic Predisposition to Disease , Glomerular Filtration Rate , Kidney Diseases/epidemiology , Kidney Diseases/genetics , Adult , Aged , Cystatin C/blood , Female , Genotype , Humans , Longitudinal Studies , Male , Middle Aged , Netherlands/epidemiology , Polymorphism, Single Nucleotide , Risk
17.
PLoS Genet ; 16(10): e1008718, 2020 10.
Article En | MEDLINE | ID: mdl-33045005

The genetic background of childhood body mass index (BMI), and the extent to which the well-known associations of childhood BMI with adult diseases are explained by shared genetic factors, are largely unknown. We performed a genome-wide association study meta-analysis of BMI in 61,111 children aged between 2 and 10 years. Twenty-five independent loci reached genome-wide significance in the combined discovery and replication analyses. Two of these, located near NEDD4L and SLC45A3, have not previously been reported in relation to either childhood or adult BMI. Positive genetic correlations of childhood BMI with birth weight and adult BMI, waist-to-hip ratio, diastolic blood pressure and type 2 diabetes were detected (Rg ranging from 0.11 to 0.76, P-values <0.002). A negative genetic correlation of childhood BMI with age at menarche was observed. Our results suggest that the biological processes underlying childhood BMI largely, but not completely, overlap with those underlying adult BMI. The well-known observational associations of BMI in childhood with cardio-metabolic diseases in adulthood may reflect partial genetic overlap, but in light of previous evidence, it is also likely that they are explained through phenotypic continuity of BMI from childhood into adulthood.


Cardiovascular Diseases/genetics , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Monosaccharide Transport Proteins/genetics , Nedd4 Ubiquitin Protein Ligases/genetics , Adolescent , Adult , Blood Pressure , Body Mass Index , Cardiometabolic Risk Factors , Cardiovascular Diseases/pathology , Child , Child, Preschool , Diabetes Mellitus, Type 2/pathology , Female , Genome-Wide Association Study/methods , Humans , Male , Menarche/genetics , Mendelian Randomization Analysis , Waist-Hip Ratio
18.
Hypertension ; 76(1): 195-205, 2020 07.
Article En | MEDLINE | ID: mdl-32520614

We conducted an epigenome-wide association study meta-analysis on blood pressure (BP) in 4820 individuals of European and African ancestry aged 14 to 69. Genome-wide DNA methylation data from peripheral leukocytes were obtained using the Infinium Human Methylation 450k BeadChip. The epigenome-wide association study meta-analysis identified 39 BP-related CpG sites with P<1×10-5. In silico replication in the CHARGE consortium of 17 010 individuals validated 16 of these CpG sites. Out of the 16 CpG sites, 13 showed novel association with BP. Conversely, out of the 126 CpG sites identified as being associated (P<1×10-7) with BP in the CHARGE consortium, 21 were replicated in the current study. Methylation levels of all the 34 CpG sites that were cross-validated by the current study and the CHARGE consortium were heritable and 6 showed association with gene expression. Furthermore, 9 CpG sites also showed association with BP with P<0.05 and consistent direction of the effect in the meta-analysis of the Finnish Twin Cohort (199 twin pairs and 4 singletons; 61% monozygous) and the Netherlands Twin Register (266 twin pairs and 62 singletons; 84% monozygous). Bivariate quantitative genetic modeling of the twin data showed that a majority of the phenotypic correlations between methylation levels of these CpG sites and BP could be explained by shared unique environmental rather than genetic factors, with 100% of the correlations of systolic BP with cg19693031 (TXNIP) and cg00716257 (JDP2) determined by environmental effects acting on both systolic BP and methylation levels.


Blood Pressure/genetics , CpG Islands/genetics , DNA Methylation , Epigenome/genetics , Essential Hypertension/genetics , Gene-Environment Interaction , Genome-Wide Association Study , Adolescent , Adult , Aged , Black People/statistics & numerical data , Body Mass Index , Cohort Studies , Diseases in Twins/epidemiology , Diseases in Twins/genetics , Essential Hypertension/epidemiology , Essential Hypertension/ethnology , Female , Gene Expression , Humans , Male , Middle Aged , Twin Studies as Topic , White People/statistics & numerical data , Young Adult
19.
Circ Genom Precis Med ; 13(4): e002775, 2020 08.
Article En | MEDLINE | ID: mdl-32527150

BACKGROUND: For most disease-related traits the magnitude of the contribution of genetic factors in adolescents remains unclear. METHODS: Twenty continuous traits related to anthropometry, cardiovascular and renal function, metabolism, and inflammation were selected from the ongoing prospective Tracking Adolescents' Individual Lives Survey cohort in the Netherlands with measurements of up to 5 waves from age 11 to 22 years (n=1354, 47.6% males) and all traits available at the third wave (mean age [SD]=16.22 [0.66]). For each trait, unweighted and weighted genetic risk scores (GRSs) were generated based on significantly associated single nucleotide polymorphisms identified from literature. The variance explained by the GRSs in adolescents were estimated by linear regression after adjustment for covariates. RESULTS: Except for ALT (alanine transaminase), all GRSs were significantly associated with their traits. The trait variance explained by the GRSs was highest for lipoprotein[a] (39.59%) and varied between 0.09% (ALT) and 18.49% (LDL [low-density lipoprotein]) for the other traits. For most traits, the variances explained in adolescents were comparable with or slightly smaller than those in adults. Significant increases of trait levels (except ALT) and increased risks for overweight/obesity (odds ratio, 6.41 [95% CI, 2.95-15.56]) and hypertension (odds ratio, 2.86 [95% CI, 1.39-6.17]) were found in individuals in the top GRS decile compared with those at the bottom decile. CONCLUSIONS: Variances explained by adult-based GRSs for disease-related traits in adolescents, although still relatively modest, were comparable with or slightly smaller than in adults offering promise for improved risk prediction at early ages.


Genetic Predisposition to Disease , Multifactorial Inheritance/genetics , Adolescent , Alanine Transaminase/genetics , Body Mass Index , Child , Female , Genome-Wide Association Study , Humans , Hypertension/genetics , Hypertension/pathology , Linkage Disequilibrium , Lipoprotein(a)/genetics , Lipoproteins, LDL/genetics , Male , Netherlands , Obesity/genetics , Obesity/pathology , Odds Ratio , Polymorphism, Single Nucleotide , Risk Factors , Young Adult
20.
Nat Genet ; 51(10): 1459-1474, 2019 10.
Article En | MEDLINE | ID: mdl-31578528

Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.


Cardiovascular Diseases/blood , Genetic Markers , Gout/blood , Metabolic Diseases/blood , Polymorphism, Single Nucleotide , Signal Transduction , Uric Acid/blood , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Cohort Studies , Genetic Loci , Genetic Predisposition to Disease , Genome-Wide Association Study , Gout/epidemiology , Gout/genetics , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 4/genetics , Humans , Kidney/metabolism , Kidney/pathology , Liver/metabolism , Liver/pathology , Metabolic Diseases/epidemiology , Metabolic Diseases/genetics , Neoplasm Proteins/genetics , Organ Specificity
...