Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Glia ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982743

RESUMEN

Oligodendrocytes continue to differentiate from their precursor cells even in adulthood, a process that can be modulated by neuronal activity and experience. Previous work has indicated that conditional ablation of oligodendrogenesis in adult mice leads to learning and memory deficits in a range of behavioral tasks. The current study replicated and re-evaluated evidence for a role of oligodendrogenesis in motor learning, using a complex running wheel task. Further, we found that ablating oligodendrogenesis alters brain microstructure (ex vivo MRI) and brain activity (in vivo EEG) independent of experience with the task. This suggests a role for adult oligodendrocyte formation in the maintenance of brain function and indicates that task-independent changes due to oligodendrogenesis ablation need to be considered when interpreting learning and memory deficits in this model.

2.
Front Oncol ; 14: 1342857, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606095

RESUMEN

Objective: This study explores the feasibility of ex-vivo high-field magnetic resonance (MR) imaging to create digital a three-dimensional (3D) representations of tongue cancer specimens, referred to as the "MR-based digital specimen" (MR-DS). The aim was to create a method to assist surgeons in identifying and localizing inadequate resection margins during surgery, a critical factor in achieving locoregional control. Methods: Fresh resection specimens of nine tongue cancer patients were imaged in a 7 Tesla small-bore MR, using a high-resolution multislice and 3D T2-weighted Turbo Spin Echo. Two independent radiologists (R1 and R2) outlined the tumor and mucosa on the MR-images whereafter the outlines were configured to an MR-DS. A color map was projected on the MR-DS, mapping the inadequate margins according to R1 and R2. We compared the hematoxylin-eosin-based digital specimen (HE-DS), which is a histopathological 3D representation derived from HE stained sections, with its corresponding MR-images. In line with conventional histopathological assessment, all digital specimens were divided into five anatomical regions (anterior, posterior, craniomedial, caudolateral and deep central). Over- and underestimation 95th-percentile Hausdorff-distances were calculated between the radiologist- and histopathologist-determined tumor outlines. The MR-DS' diagnostic accuracy for inadequate margin detection (i.e. sensitivity and specificity) was determined in two ways: with conventional histopathology and HE-DS as reference. Results: Using conventional histopathology as a reference, R1 achieved 77% sensitivity and 50% specificity, while R2 achieved 65% sensitivity and 57% specificity. When referencing to the HE-DS, R1 achieved 94% sensitivity and 61% specificity, while R2 achieved 88% sensitivity and 71% specificity. Range of over- and underestimation 95HD was 0.9 mm - 11.8 mm and 0.0 mm - 5.3 mm, respectively. Conclusion: This proof of concept for volumetric assessment of resection margins using MR-DSs, demonstrates promising potential for further development. Overall, sensitivity is higher than specificity for inadequate margin detection, because of the radiologist's tendency to overestimate tumor size.

3.
Front Neurol ; 15: 1332791, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38414549

RESUMEN

General anesthesia is routinely used in endovascular thrombectomy procedures, for which volatile gas and/or intravenous propofol are recommended. Emerging evidence suggests propofol may have superior effects on disability and/or mortality rates, but a mode-of-action underlying these class-specific effects remains unknown. Here, a moderate isoflurane or propofol dosage on experimental stroke outcomes was retrospectively compared using serial multiparametric MRI and behavioral testing. Adult male rats (N = 26) were subjected to 90-min filament-induced transient middle cerebral artery occlusion. Diffusion-, T2- and perfusion-weighted MRI was performed during occlusion, 0.5 h after recanalization, and four days into the subacute phase. Sequels of ischemic damage-blood-brain barrier integrity, cerebrovascular reactivity and sensorimotor functioning-were assessed after four days. While size and severity of ischemia was comparable between groups during occlusion, isoflurane anesthesia was associated with larger lesion sizes and worsened sensorimotor functioning at follow-up. MRI markers indicated that cytotoxic edema persisted locally in the isoflurane group early after recanalization, coinciding with burgeoning vasogenic edema. At follow-up, sequels of ischemia were further aggravated in the post-ischemic lesion, manifesting as increased blood-brain barrier leakage, cerebrovascular paralysis and cerebral hyperperfusion. These findings shed new light on how isoflurane, and possibly similar volatile agents, associate with persisting injurious processes after recanalization that contribute to suboptimal treatment outcome.

4.
J Cereb Blood Flow Metab ; 44(2): 209-223, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37873758

RESUMEN

Futile recanalization hampers prognoses of ischemic stroke after successful mechanical thrombectomy, hypothetically through post-recanalization perfusion deficits, onset-to-groin delays and sex effects. Clinically, acute multiparametric imaging studies remain challenging. We assessed possible relationships between these factors and disease outcome after experimental cerebral ischemia-reperfusion, using translational MRI, behavioral testing and multi-model inference analyses. Male and female rats (N = 60) were subjected to 45-/90-min filament-induced transient middle cerebral artery occlusion. Diffusion, T2- and perfusion-weighted MRI at occlusion, 0.5 h and four days after recanalization, enabled tracking of tissue fate, and relative regional cerebral blood flow (rrCBF) and -volume (rrCBV). Lesion areas were parcellated into core, salvageable tissue and delayed injury, verified by histology. Recanalization resulted in acute-to-subacute lesion volume reductions, most apparently in females (n = 19). Hyperacute normo-to-hyperperfusion in the post-ischemic lesion augmented towards day four, particularly in males (n = 23). Tissue suffering delayed injury contained higher ratios of hypoperfused voxels early after recanalization. Regressed against acute-to-subacute lesion volume change, increased rrCBF associated with lesion growth, but increased rrCBV with lesion reduction. Similar relationships were detected for behavioral outcome. Post-ischemic hyperperfusion may develop differentially in males and females, and can be beneficial or detrimental to disease outcome, depending on which perfusion parameter is used as explanatory variable.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Masculino , Femenino , Ratas , Animales , Isquemia Encefálica/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Angiografía por Resonancia Magnética , Accidente Cerebrovascular/diagnóstico por imagen , Resultado del Tratamiento
5.
J Cereb Blood Flow Metab ; 43(5): 778-790, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36606595

RESUMEN

Recanalization therapy after acute ischemic stroke enables restoration of cerebral perfusion. However, a significant subset of patients has poor outcome, which may be caused by disruption of cerebral energy metabolism. To assess changes in glucose metabolism subacutely and chronically after recanalization, we applied two complementary imaging techniques, fluorodeoxyglucose (FDG) positron emission tomography (PET) and deuterium (2H) metabolic imaging (DMI), after 60-minute transient middle cerebral artery occlusion (tMCAO) in C57BL/6 mice. Glucose uptake, measured with FDG PET, was reduced at 48 hours after tMCAO and returned to baseline value after 11 days. DMI revealed effective glucose supply as well as elevated lactate production and reduced glutamate/glutamine synthesis in the lesion area at 48 hours post-tMCAO, of which the extent was dependent on stroke severity. A further decrease in oxidative metabolism was evident after 11 days. Immunohistochemistry revealed significant glial activation in and around the lesion, which may play a role in the observed metabolic profiles. Our findings indicate that imaging (altered) active glucose metabolism in and around reperfused stroke lesions can provide substantial information on (secondary) pathophysiological changes in post-ischemic brain tissue.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Ratones , Deuterio/metabolismo , Proyectos Piloto , Fluorodesoxiglucosa F18/metabolismo , Accidente Cerebrovascular Isquémico/patología , Ratones Endogámicos C57BL , Encéfalo/irrigación sanguínea , Tomografía de Emisión de Positrones , Infarto de la Arteria Cerebral Media/patología , Glucosa/metabolismo
6.
Methods Mol Biol ; 2616: 153-168, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36715933

RESUMEN

Magnetic resonance imaging (MRI) allows noninvasive and non-destructive imaging of brain tissue. More specifically, the status of white matter fibers can be measured with diffusion-weighted MRI, enabling assessment of structural degeneration or remodeling of white matter tracts in diseased brain. Here, we describe the preparation of post-stroke rodent brain samples for post-mortem high-resolution 3D diffusion-weighted MR imaging, accompanied with guidelines for acquiring and processing the images.


Asunto(s)
Accidente Cerebrovascular , Sustancia Blanca , Animales , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Roedores , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología
7.
ACS Biomater Sci Eng ; 9(2): 760-772, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36681938

RESUMEN

Hydrogels have been suggested as novel drug delivery systems for sustained release of therapeutic proteins in various neurological disorders. The main advantage these systems offer is the controlled, prolonged exposure to a therapeutically effective dose of the released drug after a single intracerebral injection. Characterization of controlled release of therapeutics from a hydrogel is generally performed in vitro, as current methods do not allow for in vivo measurements of spatiotemporal distribution and release kinetics of a loaded protein. Importantly, the in vivo environment introduces many additional variables and factors that cannot be effectively simulated under in vitro conditions. To address this, in the present contribution, we developed a noninvasive in vivo magnetic resonance imaging (MRI) method to monitor local protein release from two injected hydrogels of the same chemical composition but different initial water contents. We designed a biodegradable hydrogel formulation composed of low and high concentration thermosensitive polymer and thiolated hyaluronic acid, which is liquid at room temperature and forms a gel due to a combination of physical and chemical cross-linking upon injection at 37 °C. The in vivo protein release kinetics from these gels were assessed by MRI analysis utilizing a model protein labeled with an MR contrast agent, i.e. gadolinium-labeled albumin (74 kDa). As proof of principle, the release kinetics of the hydrogels were first measured with MRI in vitro. Subsequently, the protein loaded hydrogels were administered in male Wistar rat brains and the release in vivo was monitored for 21 days. In vitro, the thermosensitive hydrogels with an initial water content of 81 and 66% released 64 ± 3% and 43 ± 3% of the protein loading, respectively, during the first 6 days at 37 °C. These differences were even more profound in vivo, where the thermosensitive hydrogels released 83 ± 16% and 57 ± 15% of the protein load, respectively, 1 week postinjection. Measurement of volume changes of the gels over time showed that the thermosensitive gel with the higher polymer concentration increased more than 4-fold in size in vivo after 3 weeks, which was substantially different from the in vitro behavior where a volume change of 35% was observed. Our study demonstrates the potential of MRI to noninvasively monitor in vivo intracerebral protein release from a locally administered in situ forming hydrogel, which could aid in the development and optimization of such drug delivery systems for brain disorders.


Asunto(s)
Sistemas de Liberación de Medicamentos , Hidrogeles , Ratas , Animales , Masculino , Hidrogeles/química , Ratas Wistar , Polímeros , Proteínas , Imagen por Resonancia Magnética
8.
Psychopharmacology (Berl) ; 239(8): 2457-2470, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35419637

RESUMEN

RATIONALE: Compulsivity often develops during childhood and is associated with elevated glutamate levels within the frontostriatal system. This suggests that anti-glutamatergic drugs, like memantine, may be an effective treatment. OBJECTIVE: Our goal was to characterize the acute and chronic effect of memantine treatment on compulsive behavior and frontostriatal network structure and function in an adolescent rat model of compulsivity. METHODS: Juvenile Sprague-Dawley rats received repeated quinpirole, resulting in compulsive checking behavior (n = 32; compulsive) or saline injections (n = 32; control). Eight compulsive and control rats received chronic memantine treatment, and eight compulsive and control rats received saline treatment for seven consecutive days between the 10th and 12th quinpirole/saline injection. Compulsive checking behavior was assessed, and structural and functional brain connectivity was measured with diffusion MRI and resting-state fMRI before and after treatment. The other rats received an acute single memantine (compulsive: n = 12; control: n = 12) or saline injection (compulsive: n = 4; control: n = 4) during pharmacological MRI after the 12th quinpirole/saline injection. An additional group of rats received a single memantine injection after a single quinpirole injection (n = 8). RESULTS: Memantine treatment did not affect compulsive checking nor frontostriatal structural and functional connectivity in the quinpirole-induced adolescent rat model. While memantine activated the frontal cortex in control rats, no significant activation responses were measured after single or repeated quinpirole injections. CONCLUSIONS: The lack of a memantine treatment effect in quinpirole-induced compulsive adolescent rats may be partly explained by the interaction between glutamatergic and dopaminergic receptors in the brain, which can be evaluated with functional MRI.


Asunto(s)
Memantina , Trastorno Obsesivo Compulsivo , Animales , Conducta Compulsiva/inducido químicamente , Conducta Compulsiva/tratamiento farmacológico , Modelos Animales de Enfermedad , Agonistas de Dopamina/farmacología , Memantina/farmacología , Trastorno Obsesivo Compulsivo/inducido químicamente , Trastorno Obsesivo Compulsivo/tratamiento farmacológico , Quinpirol/farmacología , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley
9.
J Cereb Blood Flow Metab ; 42(6): 1033-1048, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34986707

RESUMEN

Injectable hydrogels can generate and support pro-repair environments in injured tissue. Here we used a slow-releasing drug carrying in situ-forming hydrogel to promote post-stroke recovery in a rat model. Release kinetics were measured in vitro and in vivo with MRI, using gadolinium-labeled albumin (Galbumin), which demonstrated prolonged release over multiple weeks. Subsequently, this hydrogel was used for long-term delivery of vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang1) (Gel VEGF + Ang1, n = 14), in a photothrombotically induced cortical stroke lesion in rats. Control stroke animals were intralesionally injected with saline (Saline, n = 10), non-loaded gel (Gel, n = 10), or a single bolus of VEGF + Ang1 in saline (Saline VEGF + Ang1, n = 10). MRI was executed to guide hydrogel injection. Functional recovery was assessed with sensorimotor function tests, while tissue status and vascularization were monitored by serial in vivo MRI. Significant recovery from sensorimotor deficits from day 28 onwards was only measured in the Gel VEGF + Ang1 group. This was accompanied by significantly increased vascularization in the perilesional cortex. Histology confirmed (re)vascularization and neuronal sparing in perilesional areas. In conclusion, intralesional injection of in situ-forming hydrogel loaded with pro-angiogenic factors can support prolonged brain tissue regeneration and promote functional recovery in the chronic phase post-stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Angiopoyetina 1 , Animales , Hidrogeles , Neovascularización Patológica , Neovascularización Fisiológica , Ratas , Accidente Cerebrovascular/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular
10.
J Neurosci Res ; 100(5): 1182-1190, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-31769534

RESUMEN

Eating disorders and obesity form a major health problem in Western Society. To be able to provide adequate treatment and prevention, it is necessary to understand the neural mechanisms underlying the development of eating disorders and obesity. Specific brain networks have been shown to be involved in feeding behavior. We therefore hypothesized that functional connectivity in neural networks involved in feeding behavior is dependent on the status of homeostatic energy balance, thus on being hungry or satiated. To test our hypothesis, we measured functional connectivity and amplitudes of neural signals within neural networks in relation to food intake and sucrose tasting in rats. Therefore, 16 male Wistar rats, of which eight were food-restricted and eight were satiated, underwent resting-state functional magnetic resonance imaging (rs-fMRI) at 9.4 T. Subsequently, half of these animals underwent a sucrose tasting procedure followed by a second rs-fMRI scan. Functional connectivity and amplitude of low-frequency signal fluctuations were statistically analyzed in a linear mixed model. Although we did not detect a significant effect of food intake on functional connectivity before sucrose tasting, there was a trend toward interaction between group (satiated vs. hungry) and treatment (sucrose tasting). Functional connectivity between feeding-related regions tended to decrease stronger upon sucrose tasting in satiated rats as compared to food-restricted rats. Furthermore, rs-fMRI signal amplitudes decreased stronger upon sucrose tasting in satiated rats, as compared to food-restricted rats. These findings indicate that food intake and sucrose tasting can affect functional network organization, which may explain the specific patterns in feeding behavior.


Asunto(s)
Mapeo Encefálico , Sacarosa , Animales , Encéfalo , Mapeo Encefálico/métodos , Dieta , Ingestión de Alimentos , Imagen por Resonancia Magnética , Masculino , Obesidad , Ratas , Ratas Wistar , Sacarosa/farmacología
11.
Stroke ; 52(12): e788-e791, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34674544

RESUMEN

BACKGROUND AND PURPOSE: Brain imaging has become central in the management of acute ischemic stroke. Detection of parenchymal injury and perfusion enables characterization of the extent of ischemic damage, which guides treatment decision-making. Additional assessment of secondary events, such as inflammation, which may particularly arise after recanalization, may improve diagnosis and (supplementary) treatment selection. Therefore, we developed and tested a molecular magnetic resonance imaging (MRI) approach for in vivo detection of vascular inflammation after transient middle cerebral artery occlusion in rats. METHODS: Molecular MRI of VCAM-1 (vascular cell adhesion molecule-1) expression was performed with a targeted contrast agent, in addition to MR angiography, and diffusion-, T2- and perfusion-weighted MRI, from 1 hour until 96 hours after transient middle cerebral artery occlusion in rats. RESULTS: VCAM-1 expression, detected with susceptibility-weighted MRI, was significantly enhanced at 6 hours after recanalization as compared with 1-hour postrecanalization, coinciding with a transient decline in perfusion after initial hyperperfusion. VCAM-1 levels declined after 24 hours, but remained elevated, particularly in lesion borderzones. CONCLUSIONS: The implementation of molecular MRI of vascular inflammation into imaging protocols after acute ischemic stroke could provide complementary information that may guide treatment decision-making before and after recanalization therapy.


Asunto(s)
Infarto de la Arteria Cerebral Media/patología , Imagen por Resonancia Magnética/métodos , Enfermedades Neuroinflamatorias/patología , Vasculitis/patología , Animales , Modelos Animales de Enfermedad , Procedimientos Endovasculares , Infarto de la Arteria Cerebral Media/cirugía , Masculino , Ratas , Ratas Sprague-Dawley , Trombectomía
12.
Neurorehabil Neural Repair ; 35(11): 1010-1019, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34546138

RESUMEN

Background. Recovery of motor function after stroke appears to be related to the integrity of axonal connections in the corticospinal tract (CST) and corpus callosum, which may both be affected after cortical stroke. Objective. In the present study, we aimed to elucidate the relationship of changes in measures of the CST and transcallosal tract integrity, with the interhemispheric functional connectivity and sensorimotor performance after experimental cortical stroke. Methods. We conducted in vivo diffusion magnetic resonance imaging (MRI), resting-state functional MRI, and behavior testing in twenty-five male Sprague Dawley rats recovering from unilateral photothrombotic stroke in the sensorimotor cortex. Twenty-three healthy rats served as controls. Results. A reduction in the number of reconstructed fibers, a lower fractional anisotropy, and higher radial diffusivity in the ipsilesional but intact CST, reflected remote white matter degeneration. In contrast, transcallosal tract integrity remained preserved. Functional connectivity between the ipsi- and contralesional forelimb regions of the primary somatosensory cortex significantly reduced at week 8 post-stroke. Comparably, usage of the stroke-affected forelimb was normal at week 28, following significant initial impairment between day 1 and week 8 post-stroke. Conclusions. Our study shows that post-stroke motor recovery is possible despite degeneration in the CST and may be supported by intact neuronal communication between hemispheres.


Asunto(s)
Cuerpo Calloso/patología , Actividad Motora/fisiología , Tractos Piramidales/patología , Recuperación de la Función/fisiología , Corteza Sensoriomotora/patología , Accidente Cerebrovascular/patología , Sustancia Blanca/patología , Animales , Conducta Animal/fisiología , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/fisiopatología , Imagen de Difusión Tensora , Modelos Animales de Enfermedad , Masculino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología , Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/fisiopatología , Ratas , Ratas Sprague-Dawley , Corteza Sensoriomotora/diagnóstico por imagen , Corteza Sensoriomotora/fisiopatología
13.
J Neurosci Res ; 99(5): 1377-1389, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33511664

RESUMEN

Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique implicated as a promising adjunct therapy to improve motor function through the neuromodulation of brain networks. Particularly bilateral tDCS, which affects both hemispheres, may yield stronger effects on motor learning than unilateral stimulation. Therefore, the aim of this exploratory study was to develop an experimental model for simultaneous magnetic resonance imaging (MRI) and bilateral tDCS in rats, to measure instant and resultant effects of tDCS on network activity and connectivity. Naïve, male Sprague-Dawley rats were divided into a tDCS (n = 7) and sham stimulation group (n = 6). Functional MRI data were collected during concurrent bilateral tDCS over the sensorimotor cortex, while resting-state functional MRI and perfusion MRI were acquired directly before and after stimulation. Bilateral tDCS induced a hemodynamic activation response, reflected by a bilateral increase in blood oxygenation level-dependent signal in different cortical areas, including the sensorimotor regions. Resting-state functional connectivity within the cortical sensorimotor network decreased after a first stimulation session but increased after a second session, suggesting an interaction between multiple tDCS sessions. Perfusion MRI revealed no significant changes in cerebral blood flow after tDCS. Our exploratory study demonstrates successful application of an MRI-compatible bilateral tDCS setup in an animal model. Our results indicate that bilateral tDCS can locally modulate neuronal activity and connectivity, which may underlie its therapeutic potential.


Asunto(s)
Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Corteza Sensoriomotora/diagnóstico por imagen , Corteza Sensoriomotora/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Animales , Corteza Cerebral/fisiología , Imagen por Resonancia Magnética/métodos , Masculino , Red Nerviosa/irrigación sanguínea , Ratas , Ratas Sprague-Dawley , Corteza Sensoriomotora/irrigación sanguínea
14.
Glia ; 69(3): 655-680, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33045105

RESUMEN

Encephalopathy of prematurity (EoP) is a common cause of long-term neurodevelopmental morbidity in extreme preterm infants. Diffuse white matter injury (dWMI) is currently the most commonly observed form of EoP. Impaired maturation of oligodendrocytes (OLs) is the main underlying pathophysiological mechanism. No therapies are currently available to combat dWMI. Intranasal application of mesenchymal stem cells (MSCs) is a promising therapeutic option to boost neuroregeneration after injury. Here, we developed a double-hit dWMI mouse model and investigated the therapeutic potential of intranasal MSC therapy. Postnatal systemic inflammation and hypoxia-ischemia led to transient deficits in cortical myelination and OL maturation, functional deficits and neuroinflammation. Intranasal MSCs migrated dispersedly into the injured brain and potently improved myelination and functional outcome, dampened cerebral inflammationand rescued OL maturation after dWMI. Cocultures of MSCs with primary microglia or OLs show that MSCs secrete factors that directly promote OL maturation and dampen neuroinflammation. We show that MSCs adapt their secretome after ex vivo exposure to dWMI milieu and identified several factors including IGF1, EGF, LIF, and IL11 that potently boost OL maturation. Additionally, we showed that MSC-treated dWMI brains express different levels of these beneficial secreted factors. In conclusion, the combination of postnatal systemic inflammation and hypoxia-ischemia leads to a pattern of developmental brain abnormalities that mimics the clinical situation. Intranasal delivery of MSCs, that secrete several beneficial factors in situ, is a promising strategy to restore myelination after dWMI and subsequently improve the neurodevelopmental outcome of extreme preterm infants in the future.


Asunto(s)
Lesiones Encefálicas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Humanos , Hipoxia , Recién Nacido , Recien Nacido Prematuro , Inflamación , Ratones , Enfermedades Neuroinflamatorias , Secretoma
15.
Int J Eat Disord ; 54(7): 1116-1126, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32671875

RESUMEN

Satiation is influenced by a variety of signals including gastric distention and oro-sensory stimulation. Here we developed a high-field (9.4 T) functional magnetic resonance imaging (fMRI) protocol to test how oro-sensory stimulation and gastric distention, as induced with a block-design paradigm, affect brain activation under different states of energy balance in rats. Repeated tasting of sucrose induced positive and negative fMRI responses in the ventral tegmental area and septum, respectively, and gradual neural activation in the anterior insula and the brain stem nucleus of the solitary tract (NTS), as revealed using a two-level generalized linear model-based analysis. These unique findings align with comparable human experiments, and are now for the first time identified in rats, thereby allowing for comparison between species. Gastric distention induced more extensive brain activation, involving the insular cortex and NTS. Our findings are largely in line with human studies that have shown that the NTS is involved in processing both visceral information and taste, and anterior insula in processing sweet taste oro-sensory signals. Gastric distention and sucrose tasting induced responses in mesolimbic areas, to our knowledge not previously detected in humans, which may reflect the rewarding effects of a full stomach and sweet taste, thereby giving more insight into the processing of sensory signals leading to satiation. The similarities of these data to human neuroimaging data demonstrate the translational value of the approach and offer a new avenue to deepen our understanding of the process of satiation in healthy people and those with eating disorders.


Asunto(s)
Encéfalo , Gusto , Animales , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética , Ratas , Saciedad , Percepción del Gusto
16.
J Neurotrauma ; 38(12): 1642-1653, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33198560

RESUMEN

Despite clinical symptoms, a large majority of people with mild traumatic brain injury (TBI) have normal computed tomography (CT) and magnetic resonance imaging (MRI) scans. Therefore, present-day neuroimaging tools are insufficient to diagnose or classify low grades of TBI. Advanced neuroimaging techniques, such as diffusion-weighted and functional MRI, may yield novel biomarkers that may aid in the diagnosis of TBI. Therefore, the present study had two aims: first, to characterize the development of MRI-based measures of structural and functional changes in gray and white matter regions from acute to chronic stages after mild and moderate TBI; and second, to identify the imaging markers that can most accurately predict outcome after TBI. To these aims, 52 rats underwent serial functional (resting-state) and structural (T1-, T2-, and diffusion-weighted) MRI before and 1 h, 1 day, 1 week, 1 month and 3-4 months after mild or moderate experimental TBI. All rats underwent behavioral testing. Histology was performed in subgroups of rats at different time points. Early after moderate TBI, axial and radial diffusivities were increased, and fractional anisotropy was reduced in the corpus callosum and bilateral hippocampi, which normalized over time and was paralleled by recovery of sensorimotor function. Correspondingly, histology revealed decreased myelin staining early after TBI, which was not detected at chronic stages. No significant changes in individual outcome measures were detected after mild TBI. However, multivariate analysis showed a significant additive contribution of diffusion parameters in the distinction between control and different grades of TBI-affected brains. Therefore, combining multiple imaging markers may increase the sensitivity for TBI-related pathology.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Imagen de Difusión Tensora/métodos , Sustancia Gris/patología , Neuroimagen/métodos , Sustancia Blanca/patología , Animales , Modelos Animales de Enfermedad , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Ratas , Ratas Sprague-Dawley
17.
Pain Pract ; 20(5): 510-521, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32124540

RESUMEN

OBJECTIVES: To assess the supraspinal working mechanisms of the burst spinal cord stimulation (SCS) mode, we used functional magnetic resonance imaging (fMRI) in chronic neuropathic rats. We hypothesized that active recharge burst SCS would induce a more profound blood oxygenation level-dependent (BOLD) signal increase in areas associated with cognitive-emotional aspects of pain, as compared to tonic SCS. METHODS: Sprague Dawley rats (n = 17) underwent a unilateral partial sciatic nerve ligation, which resulted in chronic neuropathic pain. Quadripolar SCS electrodes were epidurally positioned on top of the dorsal columns at Th13. Isoflurane-anesthetized (1.5%) rats received either tonic SCS (n = 8) or burst SCS (n = 9) at 66% of motor threshold. BOLD fMRI was conducted before, during, and after SCS using a 9.4-T horizontal bore scanner. RESULTS: Overall, both tonic and burst SCS induced a significant increase of BOLD signal levels in areas associated with the location and intensity of pain, and areas associated with cognitive-emotional aspects of pain. Additionally, burst SCS significantly increased BOLD signal levels in the raphe nuclei, nucleus accumbens, and caudate putamen. Tonic SCS did not induce a significant increase in BOLD signal levels in these areas. CONCLUSIONS: In conclusion, active recharge burst and tonic SCS have different effects on the intensity and localization of SCS-induced activation responses in the brain. This work demonstrates that active recharge burst is another waveform that can engage brain areas associated with cognitive-emotional aspects of pain as well as areas associated with location and intensity of pain. Previous studies showing similar engagement used only passive recharge burst.


Asunto(s)
Encéfalo/fisiopatología , Neuralgia/fisiopatología , Estimulación de la Médula Espinal/métodos , Animales , Imagen por Resonancia Magnética , Masculino , Ratas , Ratas Sprague-Dawley , Nervio Ciático/lesiones , Médula Espinal/fisiopatología
18.
Eur Neuropsychopharmacol ; 33: 58-70, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32151497

RESUMEN

Obsessive-compulsive disorder (OCD) is increasingly considered to be a neurodevelopmental disorder. However, despite insights in neural substrates of OCD in adults, less is known about mechanisms underlying compulsivity during brain development in children and adolescents. Therefore, we developed an adolescent rat model of compulsive checking behavior and investigated developmental changes in structural and functional measures in the frontostriatal circuitry. Five-weeks old Sprague Dawley rats were subcutaneously injected with quinpirole (n = 21) or saline (n = 20) twice a week for five weeks. Each injection was followed by placement in the middle of an open field table, and compulsive behavior was quantified as repeated checking behavior. Anatomical, resting-state functional and diffusion MRI at 4.7T were conducted before the first and after the last quinpirole/saline injection to measure regional volumes, functional connectivity and structural integrity in the brain, respectively. After consecutive quinpirole injections, adolescent rats demonstrated clear checking behavior and repeated travelling between two open-field zones. MRI measurements revealed an increase of regional volumes within the frontostriatal circuits and an increase in fractional anisotropy (FA) in white matter areas during maturation in both experimental groups. Quinpirole-injected rats showed a larger developmental increase in FA values in the internal capsule and forceps minor compared to control rats. Our study points toward a link between development of compulsive behavior and altered white matter maturation in quinpirole-injected adolescent rats, in line with observations in pediatric patients with compulsive phenotypes. This novel animal model provides opportunities to investigate novel treatments and underlying mechanisms for patients with early-onset OCD specifically.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Agonistas de Dopamina , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Trastorno Obsesivo Compulsivo/psicología , Quinpirol , Animales , Conducta Animal , Mapeo Encefálico , Imagen de Difusión por Resonancia Magnética , Aseo Animal , Cápsula Interna/diagnóstico por imagen , Locomoción , Imagen por Resonancia Magnética , Red Nerviosa/diagnóstico por imagen , Trastorno Obsesivo Compulsivo/inducido químicamente , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Sustancia Blanca/diagnóstico por imagen
19.
Sci Rep ; 10(1): 56, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31919379

RESUMEN

An improved understanding of the structure-function relationship in the brain is necessary to know to what degree structural connectivity underpins abnormal functional connectivity seen in disorders. We integrated high-field resting-state fMRI-based functional connectivity with high-resolution macro-scale diffusion-based and meso-scale neuronal tracer-based structural connectivity, to obtain an accurate depiction of the structure-function relationship in the rat brain. Our main goal was to identify to what extent structural and functional connectivity strengths are correlated, macro- and meso-scopically, across the cortex. Correlation analyses revealed a positive correspondence between functional and macro-scale diffusion-based structural connectivity, but no significant correlation between functional connectivity and meso-scale neuronal tracer-based structural connectivity. Zooming in on individual connections, we found strong functional connectivity in two well-known resting-state networks: the sensorimotor and default mode network. Strong functional connectivity within these networks coincided with strong short-range intrahemispheric structural connectivity, but with weak heterotopic interhemispheric and long-range intrahemispheric structural connectivity. Our study indicates the importance of combining measures of connectivity at distinct hierarchical levels to accurately determine connectivity across networks in the healthy and diseased brain. Although characteristics of the applied techniques may affect where structural and functional networks (dis)agree, distinct structure-function relationships across the brain could also have a biological basis.


Asunto(s)
Encéfalo/fisiología , Conectoma/métodos , Algoritmos , Animales , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Ratas , Ratas Wistar
20.
Addict Biol ; 25(1): e12722, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30748070

RESUMEN

Excessive use of cocaine is known to induce changes in brain white and gray matter. It is unknown whether the extent of these changes is related to individual differences in vulnerability to cocaine addiction. One factor increasing vulnerability involves reduced expression of the serotonin transporter (5-HTT). Human studies have shown that inherited 5-HTT downregulation is associated with structural changes in the brain. These genotype-related structural changes may contribute to risk for cocaine addiction. Here, we tested this idea by using ultrahigh-resolution structural magnetic resonance imaging (MRI) on postmortem tissue of 5-HTT-/- and wild-type (5-HTT+/+ ) rats with a history of long access to cocaine or sucrose (control) self-administration. We found that 5-HTT-/- rats, compared with wild-type control animals, self-administered more cocaine, but not sucrose, under long-access conditions. Ultrahigh-resolution structural MRI subsequently revealed that, independent of sucrose or cocaine self-administration, 5-HTT-/- rats had a smaller amygdala. Moreover, we found an interaction between genotype and type of reward for dorsal raphe nucleus volume. The data point to an important but differential role of the amygdala and dorsal raphe nucleus in 5-HTT genotype-dependent vulnerability to cocaine addiction.


Asunto(s)
Encéfalo/efectos de los fármacos , Trastornos Relacionados con Cocaína/patología , Cocaína/farmacología , Imagen por Resonancia Magnética/métodos , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Sacarosa/administración & dosificación , Animales , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Cocaína/administración & dosificación , Modelos Animales de Enfermedad , Inhibidores de Captación de Dopamina/administración & dosificación , Inhibidores de Captación de Dopamina/farmacología , Ratas , Autoadministración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...